A Multiscale Approach to High-Resolution Ocean Profile Observations within a 4DVAR Analysis System

Most ocean data assimilation systems are tuned to process and assimilate observations to constrain features on the order of the mesoscale and larger. Typically this involves removal of observations or computing averaged observations. This procedure, while necessary, eliminates many observations from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2019-02, Vol.147 (2), p.627-643
Hauptverfasser: Carrier, Matthew J., Osborne, John J., Ngodock, Hans E., Smith, Scott R., Souopgui, Innocent, D’Addezio, Joseph M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 643
container_issue 2
container_start_page 627
container_title Monthly weather review
container_volume 147
creator Carrier, Matthew J.
Osborne, John J.
Ngodock, Hans E.
Smith, Scott R.
Souopgui, Innocent
D’Addezio, Joseph M.
description Most ocean data assimilation systems are tuned to process and assimilate observations to constrain features on the order of the mesoscale and larger. Typically this involves removal of observations or computing averaged observations. This procedure, while necessary, eliminates many observations from the analysis step and can reduce the overall effectiveness of a particular observing platform. Simply including these observations is not an option as doing so can produce an overdetermined, ill-conditioned problem that is more difficult to solve. An approach, presented here, aims to avoid such issues while at the same time increasing the number of observations within the assimilation. A two-step assimilation procedure with the four-dimensional variational data assimilation (4DVAR) system is adopted. The first step attempts to constrain the large-scale features by assimilating a set of super observations with appropriate background error correlation scales and error variances. The second step then attempts to correct smaller-scale features by assimilating the full observation set with shorter background error correlation scales and appropriate error variances; here the background state is taken as the analysis from the first step. Results using a real high-density observation set from underwater gliders in the region southeast of Iceland, collected during the 2017 Nordic Recognized Environmental Picture (NREP) experiment, will be shown using the Navy Coastal Ocean Model 4DVAR (NCOM-4DVAR).
doi_str_mv 10.1175/MWR-D-17-0300.1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1544125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2395697760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-5aeb0647e4ccece19f07020e41a63ef23ecefebf7a79158faa4a41ff02d347a83</originalsourceid><addsrcrecordid>eNotkM1LAzEUxIMoWKtnr0HPsckmu-kel1at0FKpX8eQjS82Zbupm6zS_96Uenow82OYNwhdM3rHmMxHi48VmRImCeU0SSdowPKMEipKfooGlGbJKYQ4RxchbCilRSGyAaorvOib6ILRDeBqt-u8NmscPZ65rzVZQfBNH51v8dKAbvFz561L5LIO0P3ogxPwr4tr12KNxfS9WuGq1c0-uIBf9iHC9hKdWd0EuPq_Q_T2cP86mZH58vFpUs2J4VxGkmuoU0EJwhgwwEpLJc0oCKYLDjbjSbRQW6llyfKx1Vpowayl2ScXUo_5EN0cc32ITgXjIpi18W0LJiqWC8GyPEG3Ryg9-t1DiGrj-y4VDirjZV6UUhY0UaMjZTofQgdW7Tq31d1eMaoOa6u0tpoqJtVhbcX4H59Bcq0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395697760</pqid></control><display><type>article</type><title>A Multiscale Approach to High-Resolution Ocean Profile Observations within a 4DVAR Analysis System</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Carrier, Matthew J. ; Osborne, John J. ; Ngodock, Hans E. ; Smith, Scott R. ; Souopgui, Innocent ; D’Addezio, Joseph M.</creator><creatorcontrib>Carrier, Matthew J. ; Osborne, John J. ; Ngodock, Hans E. ; Smith, Scott R. ; Souopgui, Innocent ; D’Addezio, Joseph M. ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Most ocean data assimilation systems are tuned to process and assimilate observations to constrain features on the order of the mesoscale and larger. Typically this involves removal of observations or computing averaged observations. This procedure, while necessary, eliminates many observations from the analysis step and can reduce the overall effectiveness of a particular observing platform. Simply including these observations is not an option as doing so can produce an overdetermined, ill-conditioned problem that is more difficult to solve. An approach, presented here, aims to avoid such issues while at the same time increasing the number of observations within the assimilation. A two-step assimilation procedure with the four-dimensional variational data assimilation (4DVAR) system is adopted. The first step attempts to constrain the large-scale features by assimilating a set of super observations with appropriate background error correlation scales and error variances. The second step then attempts to correct smaller-scale features by assimilating the full observation set with shorter background error correlation scales and appropriate error variances; here the background state is taken as the analysis from the first step. Results using a real high-density observation set from underwater gliders in the region southeast of Iceland, collected during the 2017 Nordic Recognized Environmental Picture (NREP) experiment, will be shown using the Navy Coastal Ocean Model 4DVAR (NCOM-4DVAR).</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/MWR-D-17-0300.1</identifier><language>eng</language><publisher>Washington: American Meteorological Society</publisher><subject>Analysis ; Correlation ; Data assimilation ; Data collection ; ENVIRONMENTAL SCIENCES ; Error correction ; Experiments ; Gliders ; Multiscale analysis ; Ocean models ; Oceanic analysis ; Oceans ; Procedures ; Underwater gliders</subject><ispartof>Monthly weather review, 2019-02, Vol.147 (2), p.627-643</ispartof><rights>Copyright American Meteorological Society Feb 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-5aeb0647e4ccece19f07020e41a63ef23ecefebf7a79158faa4a41ff02d347a83</citedby><cites>FETCH-LOGICAL-c337t-5aeb0647e4ccece19f07020e41a63ef23ecefebf7a79158faa4a41ff02d347a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3681,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1544125$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrier, Matthew J.</creatorcontrib><creatorcontrib>Osborne, John J.</creatorcontrib><creatorcontrib>Ngodock, Hans E.</creatorcontrib><creatorcontrib>Smith, Scott R.</creatorcontrib><creatorcontrib>Souopgui, Innocent</creatorcontrib><creatorcontrib>D’Addezio, Joseph M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>A Multiscale Approach to High-Resolution Ocean Profile Observations within a 4DVAR Analysis System</title><title>Monthly weather review</title><description>Most ocean data assimilation systems are tuned to process and assimilate observations to constrain features on the order of the mesoscale and larger. Typically this involves removal of observations or computing averaged observations. This procedure, while necessary, eliminates many observations from the analysis step and can reduce the overall effectiveness of a particular observing platform. Simply including these observations is not an option as doing so can produce an overdetermined, ill-conditioned problem that is more difficult to solve. An approach, presented here, aims to avoid such issues while at the same time increasing the number of observations within the assimilation. A two-step assimilation procedure with the four-dimensional variational data assimilation (4DVAR) system is adopted. The first step attempts to constrain the large-scale features by assimilating a set of super observations with appropriate background error correlation scales and error variances. The second step then attempts to correct smaller-scale features by assimilating the full observation set with shorter background error correlation scales and appropriate error variances; here the background state is taken as the analysis from the first step. Results using a real high-density observation set from underwater gliders in the region southeast of Iceland, collected during the 2017 Nordic Recognized Environmental Picture (NREP) experiment, will be shown using the Navy Coastal Ocean Model 4DVAR (NCOM-4DVAR).</description><subject>Analysis</subject><subject>Correlation</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Error correction</subject><subject>Experiments</subject><subject>Gliders</subject><subject>Multiscale analysis</subject><subject>Ocean models</subject><subject>Oceanic analysis</subject><subject>Oceans</subject><subject>Procedures</subject><subject>Underwater gliders</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkM1LAzEUxIMoWKtnr0HPsckmu-kel1at0FKpX8eQjS82Zbupm6zS_96Uenow82OYNwhdM3rHmMxHi48VmRImCeU0SSdowPKMEipKfooGlGbJKYQ4RxchbCilRSGyAaorvOib6ILRDeBqt-u8NmscPZ65rzVZQfBNH51v8dKAbvFz561L5LIO0P3ogxPwr4tr12KNxfS9WuGq1c0-uIBf9iHC9hKdWd0EuPq_Q_T2cP86mZH58vFpUs2J4VxGkmuoU0EJwhgwwEpLJc0oCKYLDjbjSbRQW6llyfKx1Vpowayl2ScXUo_5EN0cc32ITgXjIpi18W0LJiqWC8GyPEG3Ryg9-t1DiGrj-y4VDirjZV6UUhY0UaMjZTofQgdW7Tq31d1eMaoOa6u0tpoqJtVhbcX4H59Bcq0</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Carrier, Matthew J.</creator><creator>Osborne, John J.</creator><creator>Ngodock, Hans E.</creator><creator>Smith, Scott R.</creator><creator>Souopgui, Innocent</creator><creator>D’Addezio, Joseph M.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20190201</creationdate><title>A Multiscale Approach to High-Resolution Ocean Profile Observations within a 4DVAR Analysis System</title><author>Carrier, Matthew J. ; Osborne, John J. ; Ngodock, Hans E. ; Smith, Scott R. ; Souopgui, Innocent ; D’Addezio, Joseph M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-5aeb0647e4ccece19f07020e41a63ef23ecefebf7a79158faa4a41ff02d347a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis</topic><topic>Correlation</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Error correction</topic><topic>Experiments</topic><topic>Gliders</topic><topic>Multiscale analysis</topic><topic>Ocean models</topic><topic>Oceanic analysis</topic><topic>Oceans</topic><topic>Procedures</topic><topic>Underwater gliders</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrier, Matthew J.</creatorcontrib><creatorcontrib>Osborne, John J.</creatorcontrib><creatorcontrib>Ngodock, Hans E.</creatorcontrib><creatorcontrib>Smith, Scott R.</creatorcontrib><creatorcontrib>Souopgui, Innocent</creatorcontrib><creatorcontrib>D’Addezio, Joseph M.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrier, Matthew J.</au><au>Osborne, John J.</au><au>Ngodock, Hans E.</au><au>Smith, Scott R.</au><au>Souopgui, Innocent</au><au>D’Addezio, Joseph M.</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multiscale Approach to High-Resolution Ocean Profile Observations within a 4DVAR Analysis System</atitle><jtitle>Monthly weather review</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>147</volume><issue>2</issue><spage>627</spage><epage>643</epage><pages>627-643</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><abstract>Most ocean data assimilation systems are tuned to process and assimilate observations to constrain features on the order of the mesoscale and larger. Typically this involves removal of observations or computing averaged observations. This procedure, while necessary, eliminates many observations from the analysis step and can reduce the overall effectiveness of a particular observing platform. Simply including these observations is not an option as doing so can produce an overdetermined, ill-conditioned problem that is more difficult to solve. An approach, presented here, aims to avoid such issues while at the same time increasing the number of observations within the assimilation. A two-step assimilation procedure with the four-dimensional variational data assimilation (4DVAR) system is adopted. The first step attempts to constrain the large-scale features by assimilating a set of super observations with appropriate background error correlation scales and error variances. The second step then attempts to correct smaller-scale features by assimilating the full observation set with shorter background error correlation scales and appropriate error variances; here the background state is taken as the analysis from the first step. Results using a real high-density observation set from underwater gliders in the region southeast of Iceland, collected during the 2017 Nordic Recognized Environmental Picture (NREP) experiment, will be shown using the Navy Coastal Ocean Model 4DVAR (NCOM-4DVAR).</abstract><cop>Washington</cop><pub>American Meteorological Society</pub><doi>10.1175/MWR-D-17-0300.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2019-02, Vol.147 (2), p.627-643
issn 0027-0644
1520-0493
language eng
recordid cdi_osti_scitechconnect_1544125
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Analysis
Correlation
Data assimilation
Data collection
ENVIRONMENTAL SCIENCES
Error correction
Experiments
Gliders
Multiscale analysis
Ocean models
Oceanic analysis
Oceans
Procedures
Underwater gliders
title A Multiscale Approach to High-Resolution Ocean Profile Observations within a 4DVAR Analysis System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multiscale%20Approach%20to%20High-Resolution%20Ocean%20Profile%20Observations%20within%20a%204DVAR%20Analysis%20System&rft.jtitle=Monthly%20weather%20review&rft.au=Carrier,%20Matthew%20J.&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2019-02-01&rft.volume=147&rft.issue=2&rft.spage=627&rft.epage=643&rft.pages=627-643&rft.issn=0027-0644&rft.eissn=1520-0493&rft_id=info:doi/10.1175/MWR-D-17-0300.1&rft_dat=%3Cproquest_osti_%3E2395697760%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395697760&rft_id=info:pmid/&rfr_iscdi=true