Phonon transport properties of two-dimensional electride Ca2N—A first-principles study

We investigate phonon transport in dicalcium nitride (Ca2N), an electride with two-dimensional confined electron layers, using first-principles density functional theory and the phonon Boltzmann transport equation. The in-plane ( κ100) and out-of-plane ( κ001) lattice thermal conductivities at 300 K...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2018-09, Vol.113 (13)
Hauptverfasser: Barry, Matthew C., Yan, Zhequan, Yoon, Mina, Kalidindi, Surya R., Kumar, Satish
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page
container_title Applied physics letters
container_volume 113
creator Barry, Matthew C.
Yan, Zhequan
Yoon, Mina
Kalidindi, Surya R.
Kumar, Satish
description We investigate phonon transport in dicalcium nitride (Ca2N), an electride with two-dimensional confined electron layers, using first-principles density functional theory and the phonon Boltzmann transport equation. The in-plane ( κ100) and out-of-plane ( κ001) lattice thermal conductivities at 300 K are found to be 11.72 W m−1 K−1 and 2.50 W m−1 K−1, respectively. Spectral analysis of lattice thermal conductivity shows that ∼85% of κ100 and κ001 is accumulated by phonons with frequencies less than 5.5 THz and 2.5 THz, respectively. Modal decomposition of lattice thermal conductivity further reveals that the optical phonons contribute to ∼68% and ∼55% of overall κ100 and κ001, respectively. Phonon dispersion suggests that the large optical phonon contribution is a result of low frequency optical phonons with high group velocities and the lack of phonon bandgap between the acoustic and optical phonon branches. We find that the optical phonons with frequencies below ∼5.5 THz have similar three-phonon phase space and scattering rates as acoustic phonons. Comparison of the contributions from emission and absorption processes reveals that the three-phonon phase space and scattering rates of phonons—optical or acoustic—with frequencies below 5.5 THz are largely dominated by absorption processes. We conclude that the large contribution to lattice thermal conductivity by optical phonons is due to the presence of multiple low frequency optical phonon modes with high group velocities and similar phase space and scattering rates as the acoustic phonons. This study provides the frequency and temperature dependent lattice thermal conductivity and insights into phonon transport in Ca2N, both of which have important implications for the development of Ca2N based devices.
doi_str_mv 10.1063/1.5051465
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1543886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2114655732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-b539d2f38a6c9b05112ac6ce4c94c59ea01ca0ceafb1e40ab4c09df69efeee8e3</originalsourceid><addsrcrecordid>eNp90M1KAzEUBeAgCtbqwjcYdKUwNZlMppOlFP-gqAsFdyHN3NCUaTImqdKdD-ET-iSmTNGF4CoEvtzccxA6JnhEcEUvyIhhRsqK7aABweNxTgmpd9EAY0zzijOyjw5CWKQrKygdoJfHubPOZtFLGzrnY9Z514GPBkLmdBbfXd6YJdhgnJVtBi2o6E0D2UQW918fn5eZNj7EvPPGKtO16VmIq2Z9iPa0bAMcbc8her6-eprc5tOHm7vJ5TRXtOYxnzHKm0LTWlaKz9LqpJCqUlAqXirGQWKiJFYg9YxAieWsVJg3uuKgAaAGOkQn_VwXohFBmQhqrpy1aU9BWEnrukrotEcp3OsKQhQLt_IpTxAF2bTFxrRI6qxXyrsQPGiRQi2lXwuCxaZdQcS23WTPe7v5UcZUzg9-c_4Xiq7R_-G_k78BdtOKpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114655732</pqid></control><display><type>article</type><title>Phonon transport properties of two-dimensional electride Ca2N—A first-principles study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Barry, Matthew C. ; Yan, Zhequan ; Yoon, Mina ; Kalidindi, Surya R. ; Kumar, Satish</creator><creatorcontrib>Barry, Matthew C. ; Yan, Zhequan ; Yoon, Mina ; Kalidindi, Surya R. ; Kumar, Satish ; Univ. of California, Oakland, CA (United States) ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>We investigate phonon transport in dicalcium nitride (Ca2N), an electride with two-dimensional confined electron layers, using first-principles density functional theory and the phonon Boltzmann transport equation. The in-plane ( κ100) and out-of-plane ( κ001) lattice thermal conductivities at 300 K are found to be 11.72 W m−1 K−1 and 2.50 W m−1 K−1, respectively. Spectral analysis of lattice thermal conductivity shows that ∼85% of κ100 and κ001 is accumulated by phonons with frequencies less than 5.5 THz and 2.5 THz, respectively. Modal decomposition of lattice thermal conductivity further reveals that the optical phonons contribute to ∼68% and ∼55% of overall κ100 and κ001, respectively. Phonon dispersion suggests that the large optical phonon contribution is a result of low frequency optical phonons with high group velocities and the lack of phonon bandgap between the acoustic and optical phonon branches. We find that the optical phonons with frequencies below ∼5.5 THz have similar three-phonon phase space and scattering rates as acoustic phonons. Comparison of the contributions from emission and absorption processes reveals that the three-phonon phase space and scattering rates of phonons—optical or acoustic—with frequencies below 5.5 THz are largely dominated by absorption processes. We conclude that the large contribution to lattice thermal conductivity by optical phonons is due to the presence of multiple low frequency optical phonon modes with high group velocities and similar phase space and scattering rates as the acoustic phonons. This study provides the frequency and temperature dependent lattice thermal conductivity and insights into phonon transport in Ca2N, both of which have important implications for the development of Ca2N based devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.5051465</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic absorption ; Acoustic emission ; Acoustics ; Applied physics ; Boltzmann transport equation ; Density functional theory ; First principles ; Heat conductivity ; Heat transfer ; Lattice vibration ; Low frequencies ; MATERIALS SCIENCE ; Phonons ; Physics ; Scattering ; Temperature dependence ; Thermal conductivity ; Transport properties</subject><ispartof>Applied physics letters, 2018-09, Vol.113 (13)</ispartof><rights>Author(s)</rights><rights>2018 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-b539d2f38a6c9b05112ac6ce4c94c59ea01ca0ceafb1e40ab4c09df69efeee8e3</citedby><cites>FETCH-LOGICAL-c389t-b539d2f38a6c9b05112ac6ce4c94c59ea01ca0ceafb1e40ab4c09df69efeee8e3</cites><orcidid>0000-0001-6909-7507 ; 0000000169097507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/1.5051465$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76353</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1543886$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Barry, Matthew C.</creatorcontrib><creatorcontrib>Yan, Zhequan</creatorcontrib><creatorcontrib>Yoon, Mina</creatorcontrib><creatorcontrib>Kalidindi, Surya R.</creatorcontrib><creatorcontrib>Kumar, Satish</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Phonon transport properties of two-dimensional electride Ca2N—A first-principles study</title><title>Applied physics letters</title><description>We investigate phonon transport in dicalcium nitride (Ca2N), an electride with two-dimensional confined electron layers, using first-principles density functional theory and the phonon Boltzmann transport equation. The in-plane ( κ100) and out-of-plane ( κ001) lattice thermal conductivities at 300 K are found to be 11.72 W m−1 K−1 and 2.50 W m−1 K−1, respectively. Spectral analysis of lattice thermal conductivity shows that ∼85% of κ100 and κ001 is accumulated by phonons with frequencies less than 5.5 THz and 2.5 THz, respectively. Modal decomposition of lattice thermal conductivity further reveals that the optical phonons contribute to ∼68% and ∼55% of overall κ100 and κ001, respectively. Phonon dispersion suggests that the large optical phonon contribution is a result of low frequency optical phonons with high group velocities and the lack of phonon bandgap between the acoustic and optical phonon branches. We find that the optical phonons with frequencies below ∼5.5 THz have similar three-phonon phase space and scattering rates as acoustic phonons. Comparison of the contributions from emission and absorption processes reveals that the three-phonon phase space and scattering rates of phonons—optical or acoustic—with frequencies below 5.5 THz are largely dominated by absorption processes. We conclude that the large contribution to lattice thermal conductivity by optical phonons is due to the presence of multiple low frequency optical phonon modes with high group velocities and similar phase space and scattering rates as the acoustic phonons. This study provides the frequency and temperature dependent lattice thermal conductivity and insights into phonon transport in Ca2N, both of which have important implications for the development of Ca2N based devices.</description><subject>Acoustic absorption</subject><subject>Acoustic emission</subject><subject>Acoustics</subject><subject>Applied physics</subject><subject>Boltzmann transport equation</subject><subject>Density functional theory</subject><subject>First principles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lattice vibration</subject><subject>Low frequencies</subject><subject>MATERIALS SCIENCE</subject><subject>Phonons</subject><subject>Physics</subject><subject>Scattering</subject><subject>Temperature dependence</subject><subject>Thermal conductivity</subject><subject>Transport properties</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEUBeAgCtbqwjcYdKUwNZlMppOlFP-gqAsFdyHN3NCUaTImqdKdD-ET-iSmTNGF4CoEvtzccxA6JnhEcEUvyIhhRsqK7aABweNxTgmpd9EAY0zzijOyjw5CWKQrKygdoJfHubPOZtFLGzrnY9Z514GPBkLmdBbfXd6YJdhgnJVtBi2o6E0D2UQW918fn5eZNj7EvPPGKtO16VmIq2Z9iPa0bAMcbc8her6-eprc5tOHm7vJ5TRXtOYxnzHKm0LTWlaKz9LqpJCqUlAqXirGQWKiJFYg9YxAieWsVJg3uuKgAaAGOkQn_VwXohFBmQhqrpy1aU9BWEnrukrotEcp3OsKQhQLt_IpTxAF2bTFxrRI6qxXyrsQPGiRQi2lXwuCxaZdQcS23WTPe7v5UcZUzg9-c_4Xiq7R_-G_k78BdtOKpQ</recordid><startdate>20180924</startdate><enddate>20180924</enddate><creator>Barry, Matthew C.</creator><creator>Yan, Zhequan</creator><creator>Yoon, Mina</creator><creator>Kalidindi, Surya R.</creator><creator>Kumar, Satish</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6909-7507</orcidid><orcidid>https://orcid.org/0000000169097507</orcidid></search><sort><creationdate>20180924</creationdate><title>Phonon transport properties of two-dimensional electride Ca2N—A first-principles study</title><author>Barry, Matthew C. ; Yan, Zhequan ; Yoon, Mina ; Kalidindi, Surya R. ; Kumar, Satish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-b539d2f38a6c9b05112ac6ce4c94c59ea01ca0ceafb1e40ab4c09df69efeee8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic absorption</topic><topic>Acoustic emission</topic><topic>Acoustics</topic><topic>Applied physics</topic><topic>Boltzmann transport equation</topic><topic>Density functional theory</topic><topic>First principles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lattice vibration</topic><topic>Low frequencies</topic><topic>MATERIALS SCIENCE</topic><topic>Phonons</topic><topic>Physics</topic><topic>Scattering</topic><topic>Temperature dependence</topic><topic>Thermal conductivity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barry, Matthew C.</creatorcontrib><creatorcontrib>Yan, Zhequan</creatorcontrib><creatorcontrib>Yoon, Mina</creatorcontrib><creatorcontrib>Kalidindi, Surya R.</creatorcontrib><creatorcontrib>Kumar, Satish</creatorcontrib><creatorcontrib>Univ. of California, Oakland, CA (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barry, Matthew C.</au><au>Yan, Zhequan</au><au>Yoon, Mina</au><au>Kalidindi, Surya R.</au><au>Kumar, Satish</au><aucorp>Univ. of California, Oakland, CA (United States)</aucorp><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phonon transport properties of two-dimensional electride Ca2N—A first-principles study</atitle><jtitle>Applied physics letters</jtitle><date>2018-09-24</date><risdate>2018</risdate><volume>113</volume><issue>13</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>We investigate phonon transport in dicalcium nitride (Ca2N), an electride with two-dimensional confined electron layers, using first-principles density functional theory and the phonon Boltzmann transport equation. The in-plane ( κ100) and out-of-plane ( κ001) lattice thermal conductivities at 300 K are found to be 11.72 W m−1 K−1 and 2.50 W m−1 K−1, respectively. Spectral analysis of lattice thermal conductivity shows that ∼85% of κ100 and κ001 is accumulated by phonons with frequencies less than 5.5 THz and 2.5 THz, respectively. Modal decomposition of lattice thermal conductivity further reveals that the optical phonons contribute to ∼68% and ∼55% of overall κ100 and κ001, respectively. Phonon dispersion suggests that the large optical phonon contribution is a result of low frequency optical phonons with high group velocities and the lack of phonon bandgap between the acoustic and optical phonon branches. We find that the optical phonons with frequencies below ∼5.5 THz have similar three-phonon phase space and scattering rates as acoustic phonons. Comparison of the contributions from emission and absorption processes reveals that the three-phonon phase space and scattering rates of phonons—optical or acoustic—with frequencies below 5.5 THz are largely dominated by absorption processes. We conclude that the large contribution to lattice thermal conductivity by optical phonons is due to the presence of multiple low frequency optical phonon modes with high group velocities and similar phase space and scattering rates as the acoustic phonons. This study provides the frequency and temperature dependent lattice thermal conductivity and insights into phonon transport in Ca2N, both of which have important implications for the development of Ca2N based devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5051465</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6909-7507</orcidid><orcidid>https://orcid.org/0000000169097507</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2018-09, Vol.113 (13)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_1543886
source AIP Journals Complete; Alma/SFX Local Collection
subjects Acoustic absorption
Acoustic emission
Acoustics
Applied physics
Boltzmann transport equation
Density functional theory
First principles
Heat conductivity
Heat transfer
Lattice vibration
Low frequencies
MATERIALS SCIENCE
Phonons
Physics
Scattering
Temperature dependence
Thermal conductivity
Transport properties
title Phonon transport properties of two-dimensional electride Ca2N—A first-principles study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phonon%20transport%20properties%20of%20two-dimensional%20electride%20Ca2N%E2%80%94A%20first-principles%20study&rft.jtitle=Applied%20physics%20letters&rft.au=Barry,%20Matthew%20C.&rft.aucorp=Univ.%20of%20California,%20Oakland,%20CA%20(United%20States)&rft.date=2018-09-24&rft.volume=113&rft.issue=13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/1.5051465&rft_dat=%3Cproquest_osti_%3E2114655732%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114655732&rft_id=info:pmid/&rfr_iscdi=true