All Magic Angles in Twisted Bilayer Graphene are Topological

We show that the electronic structure of the low-energy bands in the small angle-twisted bilayer graphene consists of a series of semimetallic and topological phases. In particular, we are able to prove, using an approximate low-energy particle-hole symmetry, that the gapped set of bands that exist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-07, Vol.123 (3), p.036401-036401, Article 036401
Hauptverfasser: Song, Zhida, Wang, Zhijun, Shi, Wujun, Li, Gang, Fang, Chen, Bernevig, B Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 036401
container_issue 3
container_start_page 036401
container_title Physical review letters
container_volume 123
creator Song, Zhida
Wang, Zhijun
Shi, Wujun
Li, Gang
Fang, Chen
Bernevig, B Andrei
description We show that the electronic structure of the low-energy bands in the small angle-twisted bilayer graphene consists of a series of semimetallic and topological phases. In particular, we are able to prove, using an approximate low-energy particle-hole symmetry, that the gapped set of bands that exist around all magic angles have a nontrivial topology stabilized by a magnetic symmetry, provided band gaps appear at fillings of ±4 electrons per moiré unit cell. The topological index is given as the winding number (a Z number) of the Wilson loop in the moiré Brillouin zone. Furthermore, we also claim that, when the gapped bands are allowed to couple with higher-energy bands, the Z index collapses to a stable Z_{2} index. The approximate, emergent particle-hole symmetry is essential to the topology of graphene: When strongly broken, nontopological phases can appear. Our Letter underpins topology as the crucial ingredient to the description of low-energy graphene. We provide a four-band short-range tight-binding model whose two lower bands have the same topology, symmetry, and flatness as those of the twisted bilayer graphene and which can be used as an effective low-energy model. We then perform large-scale (11000 atoms per unit cell, 40 days per k-point computing time) ab initio calculations of a series of small angles, from 3° to 1°, which show a more complex and somewhat different evolution of the symmetry of the low-energy bands than that of the theoretical moiré model but which confirm the topological nature of the system.
doi_str_mv 10.1103/physrevlett.123.036401
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1543178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2266335487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-dc4ae54b8394986e46657f7463179cb70f13609b89d9a43fa1c5ac4918ea35903</originalsourceid><addsrcrecordid>eNpdkU1PGzEURa2KqqSUv4BGsOlmwnuxxx8SmxRRipQKVIW15ThvyCBnPLUnVPn3GIV20dXbnHuldw9jZwhTROCXw2afE70EGscpzvgUuBSAH9gEQZlaIYojNgHgWBsAdcw-5_wMADiT-hM75si1FNJM2NU8hOqne-p8Ne-fAuWq66vlny6PtK6-dcHtKVW3yQ0b6qlyiaplHGKIJeDCF_axdSHT6fs9YY_fb5bXP-rF_e3d9XxRe6FhrNdeOGrESnMjjJYkpGxUq4TkqIxfKWiRSzArbdbGCd469I3zwqAmxxsD_ISdH3pjHjubfTeS3_jY9-RHi40oPbpAXw_QkOLvHeXRbrvsKQTXU9xlO5tJw41EJQp68R_6HHepLy-8UZLzRmhVKHmgfIq5jN3aIXVbl_YWwb5JsA9Fwi96WRQJtkiwBwklePZev1ttaf0v9nd1_grvb4K5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2266335487</pqid></control><display><type>article</type><title>All Magic Angles in Twisted Bilayer Graphene are Topological</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Song, Zhida ; Wang, Zhijun ; Shi, Wujun ; Li, Gang ; Fang, Chen ; Bernevig, B Andrei</creator><creatorcontrib>Song, Zhida ; Wang, Zhijun ; Shi, Wujun ; Li, Gang ; Fang, Chen ; Bernevig, B Andrei</creatorcontrib><description>We show that the electronic structure of the low-energy bands in the small angle-twisted bilayer graphene consists of a series of semimetallic and topological phases. In particular, we are able to prove, using an approximate low-energy particle-hole symmetry, that the gapped set of bands that exist around all magic angles have a nontrivial topology stabilized by a magnetic symmetry, provided band gaps appear at fillings of ±4 electrons per moiré unit cell. The topological index is given as the winding number (a Z number) of the Wilson loop in the moiré Brillouin zone. Furthermore, we also claim that, when the gapped bands are allowed to couple with higher-energy bands, the Z index collapses to a stable Z_{2} index. The approximate, emergent particle-hole symmetry is essential to the topology of graphene: When strongly broken, nontopological phases can appear. Our Letter underpins topology as the crucial ingredient to the description of low-energy graphene. We provide a four-band short-range tight-binding model whose two lower bands have the same topology, symmetry, and flatness as those of the twisted bilayer graphene and which can be used as an effective low-energy model. We then perform large-scale (11000 atoms per unit cell, 40 days per k-point computing time) ab initio calculations of a series of small angles, from 3° to 1°, which show a more complex and somewhat different evolution of the symmetry of the low-energy bands than that of the theoretical moiré model but which confirm the topological nature of the system.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.123.036401</identifier><identifier>PMID: 31386469</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Band theory ; Banded structure ; Bilayers ; Brillouin zones ; Collapse ; Computing time ; Electronic structure ; Energy ; Energy bands ; Graphene ; Symmetry ; Topology ; Unit cell</subject><ispartof>Physical review letters, 2019-07, Vol.123 (3), p.036401-036401, Article 036401</ispartof><rights>Copyright American Physical Society Jul 19, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-dc4ae54b8394986e46657f7463179cb70f13609b89d9a43fa1c5ac4918ea35903</citedby><cites>FETCH-LOGICAL-c480t-dc4ae54b8394986e46657f7463179cb70f13609b89d9a43fa1c5ac4918ea35903</cites><orcidid>0000-0002-4987-5962</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31386469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1543178$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Zhida</creatorcontrib><creatorcontrib>Wang, Zhijun</creatorcontrib><creatorcontrib>Shi, Wujun</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Fang, Chen</creatorcontrib><creatorcontrib>Bernevig, B Andrei</creatorcontrib><title>All Magic Angles in Twisted Bilayer Graphene are Topological</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We show that the electronic structure of the low-energy bands in the small angle-twisted bilayer graphene consists of a series of semimetallic and topological phases. In particular, we are able to prove, using an approximate low-energy particle-hole symmetry, that the gapped set of bands that exist around all magic angles have a nontrivial topology stabilized by a magnetic symmetry, provided band gaps appear at fillings of ±4 electrons per moiré unit cell. The topological index is given as the winding number (a Z number) of the Wilson loop in the moiré Brillouin zone. Furthermore, we also claim that, when the gapped bands are allowed to couple with higher-energy bands, the Z index collapses to a stable Z_{2} index. The approximate, emergent particle-hole symmetry is essential to the topology of graphene: When strongly broken, nontopological phases can appear. Our Letter underpins topology as the crucial ingredient to the description of low-energy graphene. We provide a four-band short-range tight-binding model whose two lower bands have the same topology, symmetry, and flatness as those of the twisted bilayer graphene and which can be used as an effective low-energy model. We then perform large-scale (11000 atoms per unit cell, 40 days per k-point computing time) ab initio calculations of a series of small angles, from 3° to 1°, which show a more complex and somewhat different evolution of the symmetry of the low-energy bands than that of the theoretical moiré model but which confirm the topological nature of the system.</description><subject>Band theory</subject><subject>Banded structure</subject><subject>Bilayers</subject><subject>Brillouin zones</subject><subject>Collapse</subject><subject>Computing time</subject><subject>Electronic structure</subject><subject>Energy</subject><subject>Energy bands</subject><subject>Graphene</subject><subject>Symmetry</subject><subject>Topology</subject><subject>Unit cell</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpdkU1PGzEURa2KqqSUv4BGsOlmwnuxxx8SmxRRipQKVIW15ThvyCBnPLUnVPn3GIV20dXbnHuldw9jZwhTROCXw2afE70EGscpzvgUuBSAH9gEQZlaIYojNgHgWBsAdcw-5_wMADiT-hM75si1FNJM2NU8hOqne-p8Ne-fAuWq66vlny6PtK6-dcHtKVW3yQ0b6qlyiaplHGKIJeDCF_axdSHT6fs9YY_fb5bXP-rF_e3d9XxRe6FhrNdeOGrESnMjjJYkpGxUq4TkqIxfKWiRSzArbdbGCd469I3zwqAmxxsD_ISdH3pjHjubfTeS3_jY9-RHi40oPbpAXw_QkOLvHeXRbrvsKQTXU9xlO5tJw41EJQp68R_6HHepLy-8UZLzRmhVKHmgfIq5jN3aIXVbl_YWwb5JsA9Fwi96WRQJtkiwBwklePZev1ttaf0v9nd1_grvb4K5</recordid><startdate>20190716</startdate><enddate>20190716</enddate><creator>Song, Zhida</creator><creator>Wang, Zhijun</creator><creator>Shi, Wujun</creator><creator>Li, Gang</creator><creator>Fang, Chen</creator><creator>Bernevig, B Andrei</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4987-5962</orcidid></search><sort><creationdate>20190716</creationdate><title>All Magic Angles in Twisted Bilayer Graphene are Topological</title><author>Song, Zhida ; Wang, Zhijun ; Shi, Wujun ; Li, Gang ; Fang, Chen ; Bernevig, B Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-dc4ae54b8394986e46657f7463179cb70f13609b89d9a43fa1c5ac4918ea35903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Band theory</topic><topic>Banded structure</topic><topic>Bilayers</topic><topic>Brillouin zones</topic><topic>Collapse</topic><topic>Computing time</topic><topic>Electronic structure</topic><topic>Energy</topic><topic>Energy bands</topic><topic>Graphene</topic><topic>Symmetry</topic><topic>Topology</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Zhida</creatorcontrib><creatorcontrib>Wang, Zhijun</creatorcontrib><creatorcontrib>Shi, Wujun</creatorcontrib><creatorcontrib>Li, Gang</creatorcontrib><creatorcontrib>Fang, Chen</creatorcontrib><creatorcontrib>Bernevig, B Andrei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Zhida</au><au>Wang, Zhijun</au><au>Shi, Wujun</au><au>Li, Gang</au><au>Fang, Chen</au><au>Bernevig, B Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All Magic Angles in Twisted Bilayer Graphene are Topological</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2019-07-16</date><risdate>2019</risdate><volume>123</volume><issue>3</issue><spage>036401</spage><epage>036401</epage><pages>036401-036401</pages><artnum>036401</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We show that the electronic structure of the low-energy bands in the small angle-twisted bilayer graphene consists of a series of semimetallic and topological phases. In particular, we are able to prove, using an approximate low-energy particle-hole symmetry, that the gapped set of bands that exist around all magic angles have a nontrivial topology stabilized by a magnetic symmetry, provided band gaps appear at fillings of ±4 electrons per moiré unit cell. The topological index is given as the winding number (a Z number) of the Wilson loop in the moiré Brillouin zone. Furthermore, we also claim that, when the gapped bands are allowed to couple with higher-energy bands, the Z index collapses to a stable Z_{2} index. The approximate, emergent particle-hole symmetry is essential to the topology of graphene: When strongly broken, nontopological phases can appear. Our Letter underpins topology as the crucial ingredient to the description of low-energy graphene. We provide a four-band short-range tight-binding model whose two lower bands have the same topology, symmetry, and flatness as those of the twisted bilayer graphene and which can be used as an effective low-energy model. We then perform large-scale (11000 atoms per unit cell, 40 days per k-point computing time) ab initio calculations of a series of small angles, from 3° to 1°, which show a more complex and somewhat different evolution of the symmetry of the low-energy bands than that of the theoretical moiré model but which confirm the topological nature of the system.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>31386469</pmid><doi>10.1103/physrevlett.123.036401</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4987-5962</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2019-07, Vol.123 (3), p.036401-036401, Article 036401
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_1543178
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects Band theory
Banded structure
Bilayers
Brillouin zones
Collapse
Computing time
Electronic structure
Energy
Energy bands
Graphene
Symmetry
Topology
Unit cell
title All Magic Angles in Twisted Bilayer Graphene are Topological
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T23%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All%20Magic%20Angles%20in%20Twisted%20Bilayer%20Graphene%20are%20Topological&rft.jtitle=Physical%20review%20letters&rft.au=Song,%20Zhida&rft.date=2019-07-16&rft.volume=123&rft.issue=3&rft.spage=036401&rft.epage=036401&rft.pages=036401-036401&rft.artnum=036401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.123.036401&rft_dat=%3Cproquest_osti_%3E2266335487%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2266335487&rft_id=info:pmid/31386469&rfr_iscdi=true