Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae

This article presents a study of the effects of magnetic fields on non-distributed nuclear burning fronts as a possible solution to a fundamental problem for the thermonuclear explosion of a Chandrasekhar mass ( ) white dwarf (WD), the currently favored scenario for the majority of Type Ia SNe. All...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-05, Vol.858 (1), p.13
Hauptverfasser: Hristov, Boyan, Collins, David C., Hoeflich, Peter, Weatherford, Charles A., Diamond, Tiara R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 13
container_title The Astrophysical journal
container_volume 858
creator Hristov, Boyan
Collins, David C.
Hoeflich, Peter
Weatherford, Charles A.
Diamond, Tiara R.
description This article presents a study of the effects of magnetic fields on non-distributed nuclear burning fronts as a possible solution to a fundamental problem for the thermonuclear explosion of a Chandrasekhar mass ( ) white dwarf (WD), the currently favored scenario for the majority of Type Ia SNe. All existing 3D hydrodynamical simulations predict strong global mixing of the burning products due to Rayleigh-Taylor (RT) instabilities, which contradicts observations. As a first step toward studying the flame physics, we present a set of computational magnet-hydrodynamic models in rectangular flux tubes, resembling a small inner region of a WD. We consider initial magnetic fields up to of various orientations. We find an increasing suppression of RT instabilities starting at about . The front speed tends to decrease with increasing magnitude up to about . For even higher fields new small-scale, finger-like structures develop, which increase the burning speed by a factor of 3 to 4 above the field-free RT-dominated regime. We suggest that the new instability may provide sufficiently accelerated energy production during the distributed burning regime to go over the Chapman-Jougey limit and trigger a detonation. Finally, we discuss the possible origins of high magnetic fields during the final stage of the progenitor evolution or the explosion.
doi_str_mv 10.3847/1538-4357/aab7f2
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_osti_scitechconnect_1542023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2365877601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-36b8a14ed6f7780ad20dc7bd42fde8cccd53904ca72c69c8d35834b24c27b023</originalsourceid><addsrcrecordid>eNp9kM9LwzAUx4MoOKd3j0U9WpcmaZMeZW4qTAXdwVtI82Pr6JKatEL_e1sqehFPj_fe5_vlyxeA8wTeYEboLEkxiwlO6UyIghp0ACY_p0MwgRCSOMP0_RichLAbVpTnE_D6JDZWN27bKe9UZ8W-lKKKFsZo2YTI2ei5lZUWPrrTphIbL5qyPy69s_27tNG6q3X0KKK3ttbeuk-hT8GREVXQZ99zCtbLxXr-EK9e7h_nt6tYEoqaGGcFEwnRKjOUMigUgkrSQhFklGZSSpXiHBIpKJJZLpnCKcOkQEQiWkCEp-BitHWhKXmQZaPlVjpr--A8SQnqmR66HKHau49Wh4bvXOttH4sjnKWM0gwmPQVHSnoXgteG177cC9_xBPKhXT5UyYcq-dhuL7keJaWrfz3_wa_-wEW94yxlPOEJ5rUy-AvLlohT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2365877601</pqid></control><display><type>article</type><title>Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae</title><source>IOP Publishing Free Content</source><creator>Hristov, Boyan ; Collins, David C. ; Hoeflich, Peter ; Weatherford, Charles A. ; Diamond, Tiara R.</creator><creatorcontrib>Hristov, Boyan ; Collins, David C. ; Hoeflich, Peter ; Weatherford, Charles A. ; Diamond, Tiara R. ; Florida A &amp; M University, Tallahassee, FL (United States)</creatorcontrib><description>This article presents a study of the effects of magnetic fields on non-distributed nuclear burning fronts as a possible solution to a fundamental problem for the thermonuclear explosion of a Chandrasekhar mass ( ) white dwarf (WD), the currently favored scenario for the majority of Type Ia SNe. All existing 3D hydrodynamical simulations predict strong global mixing of the burning products due to Rayleigh-Taylor (RT) instabilities, which contradicts observations. As a first step toward studying the flame physics, we present a set of computational magnet-hydrodynamic models in rectangular flux tubes, resembling a small inner region of a WD. We consider initial magnetic fields up to of various orientations. We find an increasing suppression of RT instabilities starting at about . The front speed tends to decrease with increasing magnitude up to about . For even higher fields new small-scale, finger-like structures develop, which increase the burning speed by a factor of 3 to 4 above the field-free RT-dominated regime. We suggest that the new instability may provide sufficiently accelerated energy production during the distributed burning regime to go over the Chapman-Jougey limit and trigger a detonation. Finally, we discuss the possible origins of high magnetic fields during the final stage of the progenitor evolution or the explosion.</description><identifier>ISSN: 0004-637X</identifier><identifier>ISSN: 1538-4357</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aab7f2</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; ASTRONOMY AND ASTROPHYSICS ; Astrophysics ; Burning rate ; Computer simulation ; Deflagration ; Detonation ; Hydrodynamic models ; instabilities ; Magnetic fields ; magnetohydrodynamics (MHD) ; Supernovae ; Thermonuclear explosions ; Tubes ; turbulence ; White dwarf stars ; white dwarfs</subject><ispartof>The Astrophysical journal, 2018-05, Vol.858 (1), p.13</ispartof><rights>2018. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing May 01, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-36b8a14ed6f7780ad20dc7bd42fde8cccd53904ca72c69c8d35834b24c27b023</citedby><cites>FETCH-LOGICAL-c472t-36b8a14ed6f7780ad20dc7bd42fde8cccd53904ca72c69c8d35834b24c27b023</cites><orcidid>0000-0002-4338-6586 ; 0000-0001-6661-2243 ; 0000-0002-0805-1908 ; 0000000243386586 ; 0000000166612243 ; 0000000208051908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab7f2/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,38867,53842</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aab7f2$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1542023$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hristov, Boyan</creatorcontrib><creatorcontrib>Collins, David C.</creatorcontrib><creatorcontrib>Hoeflich, Peter</creatorcontrib><creatorcontrib>Weatherford, Charles A.</creatorcontrib><creatorcontrib>Diamond, Tiara R.</creatorcontrib><creatorcontrib>Florida A &amp; M University, Tallahassee, FL (United States)</creatorcontrib><title>Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>This article presents a study of the effects of magnetic fields on non-distributed nuclear burning fronts as a possible solution to a fundamental problem for the thermonuclear explosion of a Chandrasekhar mass ( ) white dwarf (WD), the currently favored scenario for the majority of Type Ia SNe. All existing 3D hydrodynamical simulations predict strong global mixing of the burning products due to Rayleigh-Taylor (RT) instabilities, which contradicts observations. As a first step toward studying the flame physics, we present a set of computational magnet-hydrodynamic models in rectangular flux tubes, resembling a small inner region of a WD. We consider initial magnetic fields up to of various orientations. We find an increasing suppression of RT instabilities starting at about . The front speed tends to decrease with increasing magnitude up to about . For even higher fields new small-scale, finger-like structures develop, which increase the burning speed by a factor of 3 to 4 above the field-free RT-dominated regime. We suggest that the new instability may provide sufficiently accelerated energy production during the distributed burning regime to go over the Chapman-Jougey limit and trigger a detonation. Finally, we discuss the possible origins of high magnetic fields during the final stage of the progenitor evolution or the explosion.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Astrophysics</subject><subject>Burning rate</subject><subject>Computer simulation</subject><subject>Deflagration</subject><subject>Detonation</subject><subject>Hydrodynamic models</subject><subject>instabilities</subject><subject>Magnetic fields</subject><subject>magnetohydrodynamics (MHD)</subject><subject>Supernovae</subject><subject>Thermonuclear explosions</subject><subject>Tubes</subject><subject>turbulence</subject><subject>White dwarf stars</subject><subject>white dwarfs</subject><issn>0004-637X</issn><issn>1538-4357</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAUx4MoOKd3j0U9WpcmaZMeZW4qTAXdwVtI82Pr6JKatEL_e1sqehFPj_fe5_vlyxeA8wTeYEboLEkxiwlO6UyIghp0ACY_p0MwgRCSOMP0_RichLAbVpTnE_D6JDZWN27bKe9UZ8W-lKKKFsZo2YTI2ei5lZUWPrrTphIbL5qyPy69s_27tNG6q3X0KKK3ttbeuk-hT8GREVXQZ99zCtbLxXr-EK9e7h_nt6tYEoqaGGcFEwnRKjOUMigUgkrSQhFklGZSSpXiHBIpKJJZLpnCKcOkQEQiWkCEp-BitHWhKXmQZaPlVjpr--A8SQnqmR66HKHau49Wh4bvXOttH4sjnKWM0gwmPQVHSnoXgteG177cC9_xBPKhXT5UyYcq-dhuL7keJaWrfz3_wa_-wEW94yxlPOEJ5rUy-AvLlohT</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Hristov, Boyan</creator><creator>Collins, David C.</creator><creator>Hoeflich, Peter</creator><creator>Weatherford, Charles A.</creator><creator>Diamond, Tiara R.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><general>Institute of Physics (IOP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4338-6586</orcidid><orcidid>https://orcid.org/0000-0001-6661-2243</orcidid><orcidid>https://orcid.org/0000-0002-0805-1908</orcidid><orcidid>https://orcid.org/0000000243386586</orcidid><orcidid>https://orcid.org/0000000166612243</orcidid><orcidid>https://orcid.org/0000000208051908</orcidid></search><sort><creationdate>20180501</creationdate><title>Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae</title><author>Hristov, Boyan ; Collins, David C. ; Hoeflich, Peter ; Weatherford, Charles A. ; Diamond, Tiara R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-36b8a14ed6f7780ad20dc7bd42fde8cccd53904ca72c69c8d35834b24c27b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Astrophysics</topic><topic>Burning rate</topic><topic>Computer simulation</topic><topic>Deflagration</topic><topic>Detonation</topic><topic>Hydrodynamic models</topic><topic>instabilities</topic><topic>Magnetic fields</topic><topic>magnetohydrodynamics (MHD)</topic><topic>Supernovae</topic><topic>Thermonuclear explosions</topic><topic>Tubes</topic><topic>turbulence</topic><topic>White dwarf stars</topic><topic>white dwarfs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hristov, Boyan</creatorcontrib><creatorcontrib>Collins, David C.</creatorcontrib><creatorcontrib>Hoeflich, Peter</creatorcontrib><creatorcontrib>Weatherford, Charles A.</creatorcontrib><creatorcontrib>Diamond, Tiara R.</creatorcontrib><creatorcontrib>Florida A &amp; M University, Tallahassee, FL (United States)</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hristov, Boyan</au><au>Collins, David C.</au><au>Hoeflich, Peter</au><au>Weatherford, Charles A.</au><au>Diamond, Tiara R.</au><aucorp>Florida A &amp; M University, Tallahassee, FL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>858</volume><issue>1</issue><spage>13</spage><pages>13-</pages><issn>0004-637X</issn><issn>1538-4357</issn><eissn>1538-4357</eissn><abstract>This article presents a study of the effects of magnetic fields on non-distributed nuclear burning fronts as a possible solution to a fundamental problem for the thermonuclear explosion of a Chandrasekhar mass ( ) white dwarf (WD), the currently favored scenario for the majority of Type Ia SNe. All existing 3D hydrodynamical simulations predict strong global mixing of the burning products due to Rayleigh-Taylor (RT) instabilities, which contradicts observations. As a first step toward studying the flame physics, we present a set of computational magnet-hydrodynamic models in rectangular flux tubes, resembling a small inner region of a WD. We consider initial magnetic fields up to of various orientations. We find an increasing suppression of RT instabilities starting at about . The front speed tends to decrease with increasing magnitude up to about . For even higher fields new small-scale, finger-like structures develop, which increase the burning speed by a factor of 3 to 4 above the field-free RT-dominated regime. We suggest that the new instability may provide sufficiently accelerated energy production during the distributed burning regime to go over the Chapman-Jougey limit and trigger a detonation. Finally, we discuss the possible origins of high magnetic fields during the final stage of the progenitor evolution or the explosion.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aab7f2</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4338-6586</orcidid><orcidid>https://orcid.org/0000-0001-6661-2243</orcidid><orcidid>https://orcid.org/0000-0002-0805-1908</orcidid><orcidid>https://orcid.org/0000000243386586</orcidid><orcidid>https://orcid.org/0000000166612243</orcidid><orcidid>https://orcid.org/0000000208051908</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2018-05, Vol.858 (1), p.13
issn 0004-637X
1538-4357
1538-4357
language eng
recordid cdi_osti_scitechconnect_1542023
source IOP Publishing Free Content
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
ASTRONOMY AND ASTROPHYSICS
Astrophysics
Burning rate
Computer simulation
Deflagration
Detonation
Hydrodynamic models
instabilities
Magnetic fields
magnetohydrodynamics (MHD)
Supernovae
Thermonuclear explosions
Tubes
turbulence
White dwarf stars
white dwarfs
title Magnetohydrodynamical Effects on Nuclear Deflagration Fronts in Type Ia Supernovae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T09%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetohydrodynamical%20Effects%20on%20Nuclear%20Deflagration%20Fronts%20in%20Type%20Ia%20Supernovae&rft.jtitle=The%20Astrophysical%20journal&rft.au=Hristov,%20Boyan&rft.aucorp=Florida%20A%20&%20M%20University,%20Tallahassee,%20FL%20(United%20States)&rft.date=2018-05-01&rft.volume=858&rft.issue=1&rft.spage=13&rft.pages=13-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aab7f2&rft_dat=%3Cproquest_O3W%3E2365877601%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2365877601&rft_id=info:pmid/&rfr_iscdi=true