Lead-free piezoelectric materials and composites for high power density energy harvesting

In the emerging era of Internet of Things (IoT), power sources for wireless sensor nodes in conjunction with efficient and secure wireless data transfer are required. Energy harvesting technologies are promising solution toward meeting the requirements for sustainable power sources for the IoT. In t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2018-08, Vol.33 (16), p.2235-2263
Hauptverfasser: Maurya, Deepam, Peddigari, Mahesh, Kang, Min-Gyu, Geng, Liwei D., Sharpes, Nathan, Annapureddy, Venkateswarlu, Palneedi, Haribabu, Sriramdas, Rammohan, Yan, Yongke, Song, Hyun-Cheol, Wang, Yu U., Ryu, Jungho, Priya, Shashank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2263
container_issue 16
container_start_page 2235
container_title Journal of materials research
container_volume 33
creator Maurya, Deepam
Peddigari, Mahesh
Kang, Min-Gyu
Geng, Liwei D.
Sharpes, Nathan
Annapureddy, Venkateswarlu
Palneedi, Haribabu
Sriramdas, Rammohan
Yan, Yongke
Song, Hyun-Cheol
Wang, Yu U.
Ryu, Jungho
Priya, Shashank
description In the emerging era of Internet of Things (IoT), power sources for wireless sensor nodes in conjunction with efficient and secure wireless data transfer are required. Energy harvesting technologies are promising solution toward meeting the requirements for sustainable power sources for the IoT. In this review, we focus on approaches for harvesting stray vibrations and magnetic field due to their abundance in the environment. Piezoelectric materials and piezoelectric–magnetostrictive [magnetoelectric (ME)] composites can be used to harvest vibration and magnetic field, respectively. Currently, such harvesters use modified lead zirconate titanate (or lead-based) piezoelectric materials and ME composites. However, environmental concerns and government regulations require the development of a suitable lead-free replacement for lead-based piezoelectric materials. In the past decade, several lead-free piezoelectric compositions have been developed and demonstrated with promising piezoelectric response. This paper reviews the significant results reported on lead-free piezoelectric materials with respect to high-density energy harvesting, covering novel processing techniques for improving the piezoelectric response and temperature stability. The review of the state-of-the-art studies on vibration and magnetic field harvesting is provided and the results are used to discuss various strategies for designing high-performance energy harvesting devices.
doi_str_mv 10.1557/jmr.2018.172
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1541931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2018_172</cupid><sourcerecordid>2094191471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-f4b052ea5953201c6ffc012e2dfa4fb8854ffa3fa1bd2b687041cfb79da85f043</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7u_AFBt3ZM0qSPpQy-YMCNLlyFNL1pM0ybmnSU8deboQOuxNWFy3fOPfcgdEnJggqR3647v2CEFguasyM0Y4TzRKQsO0YzUhQ8YSXlp-gshDUhVJCcz9D7ClSdGA-ABwvfDjagR2817tQI3qpNwKqvsXbd4IIdIWDjPG5t0-LBfYHHNfRxv8PQg292uFX-E8Jo--YcnZgoh4vDnKO3h_vX5VOyenl8Xt6tEp1m-ZgYXhHBQIkyJiVUZ8ZoQhmw2ihuqqIQ3BiVGkWrmlVZkRNOtanyslaFMISnc3Q1-bp4VgYdQ-pWu76Pj0gqOC1TGqHrCRq8-9jGgHLttr6PuSQjZWQoz_fUzURp70LwYOTgbaf8TlIi9w3L2LDcNyxjwxFPJjxErG_A_5r-wS8O9qqrvK0b-EfwAxvpjfE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094191471</pqid></control><display><type>article</type><title>Lead-free piezoelectric materials and composites for high power density energy harvesting</title><source>Cambridge Journals - Connect here FIRST to enable access</source><source>Springer journals</source><creator>Maurya, Deepam ; Peddigari, Mahesh ; Kang, Min-Gyu ; Geng, Liwei D. ; Sharpes, Nathan ; Annapureddy, Venkateswarlu ; Palneedi, Haribabu ; Sriramdas, Rammohan ; Yan, Yongke ; Song, Hyun-Cheol ; Wang, Yu U. ; Ryu, Jungho ; Priya, Shashank</creator><creatorcontrib>Maurya, Deepam ; Peddigari, Mahesh ; Kang, Min-Gyu ; Geng, Liwei D. ; Sharpes, Nathan ; Annapureddy, Venkateswarlu ; Palneedi, Haribabu ; Sriramdas, Rammohan ; Yan, Yongke ; Song, Hyun-Cheol ; Wang, Yu U. ; Ryu, Jungho ; Priya, Shashank ; Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><description>In the emerging era of Internet of Things (IoT), power sources for wireless sensor nodes in conjunction with efficient and secure wireless data transfer are required. Energy harvesting technologies are promising solution toward meeting the requirements for sustainable power sources for the IoT. In this review, we focus on approaches for harvesting stray vibrations and magnetic field due to their abundance in the environment. Piezoelectric materials and piezoelectric–magnetostrictive [magnetoelectric (ME)] composites can be used to harvest vibration and magnetic field, respectively. Currently, such harvesters use modified lead zirconate titanate (or lead-based) piezoelectric materials and ME composites. However, environmental concerns and government regulations require the development of a suitable lead-free replacement for lead-based piezoelectric materials. In the past decade, several lead-free piezoelectric compositions have been developed and demonstrated with promising piezoelectric response. This paper reviews the significant results reported on lead-free piezoelectric materials with respect to high-density energy harvesting, covering novel processing techniques for improving the piezoelectric response and temperature stability. The review of the state-of-the-art studies on vibration and magnetic field harvesting is provided and the results are used to discuss various strategies for designing high-performance energy harvesting devices.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2018.172</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Bandwidths ; Biomaterials ; Biomechanics ; Composite materials ; Data transfer (computers) ; Electric fields ; Electricity ; Energy harvesting ; Energy resources ; Government regulations ; Harvesters ; Inorganic Chemistry ; Internet of Things ; Lead free ; Lead zirconate titanates ; Magnetic fields ; Magnetostriction ; Materials Engineering ; Materials research ; Materials Science ; Medical equipment ; Nanotechnology ; Phase transitions ; Piezoelectricity ; Power sources ; REVIEW ; Sensors ; State-of-the-art reviews ; Temperature ; Vibration</subject><ispartof>Journal of materials research, 2018-08, Vol.33 (16), p.2235-2263</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-f4b052ea5953201c6ffc012e2dfa4fb8854ffa3fa1bd2b687041cfb79da85f043</citedby><cites>FETCH-LOGICAL-c367t-f4b052ea5953201c6ffc012e2dfa4fb8854ffa3fa1bd2b687041cfb79da85f043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2018.172$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291418001723/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,777,781,882,27905,27906,41469,42538,51300,55609</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1541931$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maurya, Deepam</creatorcontrib><creatorcontrib>Peddigari, Mahesh</creatorcontrib><creatorcontrib>Kang, Min-Gyu</creatorcontrib><creatorcontrib>Geng, Liwei D.</creatorcontrib><creatorcontrib>Sharpes, Nathan</creatorcontrib><creatorcontrib>Annapureddy, Venkateswarlu</creatorcontrib><creatorcontrib>Palneedi, Haribabu</creatorcontrib><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Yan, Yongke</creatorcontrib><creatorcontrib>Song, Hyun-Cheol</creatorcontrib><creatorcontrib>Wang, Yu U.</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><title>Lead-free piezoelectric materials and composites for high power density energy harvesting</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>In the emerging era of Internet of Things (IoT), power sources for wireless sensor nodes in conjunction with efficient and secure wireless data transfer are required. Energy harvesting technologies are promising solution toward meeting the requirements for sustainable power sources for the IoT. In this review, we focus on approaches for harvesting stray vibrations and magnetic field due to their abundance in the environment. Piezoelectric materials and piezoelectric–magnetostrictive [magnetoelectric (ME)] composites can be used to harvest vibration and magnetic field, respectively. Currently, such harvesters use modified lead zirconate titanate (or lead-based) piezoelectric materials and ME composites. However, environmental concerns and government regulations require the development of a suitable lead-free replacement for lead-based piezoelectric materials. In the past decade, several lead-free piezoelectric compositions have been developed and demonstrated with promising piezoelectric response. This paper reviews the significant results reported on lead-free piezoelectric materials with respect to high-density energy harvesting, covering novel processing techniques for improving the piezoelectric response and temperature stability. The review of the state-of-the-art studies on vibration and magnetic field harvesting is provided and the results are used to discuss various strategies for designing high-performance energy harvesting devices.</description><subject>Applied and Technical Physics</subject><subject>Bandwidths</subject><subject>Biomaterials</subject><subject>Biomechanics</subject><subject>Composite materials</subject><subject>Data transfer (computers)</subject><subject>Electric fields</subject><subject>Electricity</subject><subject>Energy harvesting</subject><subject>Energy resources</subject><subject>Government regulations</subject><subject>Harvesters</subject><subject>Inorganic Chemistry</subject><subject>Internet of Things</subject><subject>Lead free</subject><subject>Lead zirconate titanates</subject><subject>Magnetic fields</subject><subject>Magnetostriction</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Medical equipment</subject><subject>Nanotechnology</subject><subject>Phase transitions</subject><subject>Piezoelectricity</subject><subject>Power sources</subject><subject>REVIEW</subject><subject>Sensors</subject><subject>State-of-the-art reviews</subject><subject>Temperature</subject><subject>Vibration</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkEtLxDAUhYMoOI7u_AFBt3ZM0qSPpQy-YMCNLlyFNL1pM0ybmnSU8deboQOuxNWFy3fOPfcgdEnJggqR3647v2CEFguasyM0Y4TzRKQsO0YzUhQ8YSXlp-gshDUhVJCcz9D7ClSdGA-ABwvfDjagR2817tQI3qpNwKqvsXbd4IIdIWDjPG5t0-LBfYHHNfRxv8PQg292uFX-E8Jo--YcnZgoh4vDnKO3h_vX5VOyenl8Xt6tEp1m-ZgYXhHBQIkyJiVUZ8ZoQhmw2ihuqqIQ3BiVGkWrmlVZkRNOtanyslaFMISnc3Q1-bp4VgYdQ-pWu76Pj0gqOC1TGqHrCRq8-9jGgHLttr6PuSQjZWQoz_fUzURp70LwYOTgbaf8TlIi9w3L2LDcNyxjwxFPJjxErG_A_5r-wS8O9qqrvK0b-EfwAxvpjfE</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Maurya, Deepam</creator><creator>Peddigari, Mahesh</creator><creator>Kang, Min-Gyu</creator><creator>Geng, Liwei D.</creator><creator>Sharpes, Nathan</creator><creator>Annapureddy, Venkateswarlu</creator><creator>Palneedi, Haribabu</creator><creator>Sriramdas, Rammohan</creator><creator>Yan, Yongke</creator><creator>Song, Hyun-Cheol</creator><creator>Wang, Yu U.</creator><creator>Ryu, Jungho</creator><creator>Priya, Shashank</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Materials Research Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>OTOTI</scope></search><sort><creationdate>20180828</creationdate><title>Lead-free piezoelectric materials and composites for high power density energy harvesting</title><author>Maurya, Deepam ; Peddigari, Mahesh ; Kang, Min-Gyu ; Geng, Liwei D. ; Sharpes, Nathan ; Annapureddy, Venkateswarlu ; Palneedi, Haribabu ; Sriramdas, Rammohan ; Yan, Yongke ; Song, Hyun-Cheol ; Wang, Yu U. ; Ryu, Jungho ; Priya, Shashank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-f4b052ea5953201c6ffc012e2dfa4fb8854ffa3fa1bd2b687041cfb79da85f043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied and Technical Physics</topic><topic>Bandwidths</topic><topic>Biomaterials</topic><topic>Biomechanics</topic><topic>Composite materials</topic><topic>Data transfer (computers)</topic><topic>Electric fields</topic><topic>Electricity</topic><topic>Energy harvesting</topic><topic>Energy resources</topic><topic>Government regulations</topic><topic>Harvesters</topic><topic>Inorganic Chemistry</topic><topic>Internet of Things</topic><topic>Lead free</topic><topic>Lead zirconate titanates</topic><topic>Magnetic fields</topic><topic>Magnetostriction</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Medical equipment</topic><topic>Nanotechnology</topic><topic>Phase transitions</topic><topic>Piezoelectricity</topic><topic>Power sources</topic><topic>REVIEW</topic><topic>Sensors</topic><topic>State-of-the-art reviews</topic><topic>Temperature</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maurya, Deepam</creatorcontrib><creatorcontrib>Peddigari, Mahesh</creatorcontrib><creatorcontrib>Kang, Min-Gyu</creatorcontrib><creatorcontrib>Geng, Liwei D.</creatorcontrib><creatorcontrib>Sharpes, Nathan</creatorcontrib><creatorcontrib>Annapureddy, Venkateswarlu</creatorcontrib><creatorcontrib>Palneedi, Haribabu</creatorcontrib><creatorcontrib>Sriramdas, Rammohan</creatorcontrib><creatorcontrib>Yan, Yongke</creatorcontrib><creatorcontrib>Song, Hyun-Cheol</creatorcontrib><creatorcontrib>Wang, Yu U.</creatorcontrib><creatorcontrib>Ryu, Jungho</creatorcontrib><creatorcontrib>Priya, Shashank</creatorcontrib><creatorcontrib>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials science collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maurya, Deepam</au><au>Peddigari, Mahesh</au><au>Kang, Min-Gyu</au><au>Geng, Liwei D.</au><au>Sharpes, Nathan</au><au>Annapureddy, Venkateswarlu</au><au>Palneedi, Haribabu</au><au>Sriramdas, Rammohan</au><au>Yan, Yongke</au><au>Song, Hyun-Cheol</au><au>Wang, Yu U.</au><au>Ryu, Jungho</au><au>Priya, Shashank</au><aucorp>Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lead-free piezoelectric materials and composites for high power density energy harvesting</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2018-08-28</date><risdate>2018</risdate><volume>33</volume><issue>16</issue><spage>2235</spage><epage>2263</epage><pages>2235-2263</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><abstract>In the emerging era of Internet of Things (IoT), power sources for wireless sensor nodes in conjunction with efficient and secure wireless data transfer are required. Energy harvesting technologies are promising solution toward meeting the requirements for sustainable power sources for the IoT. In this review, we focus on approaches for harvesting stray vibrations and magnetic field due to their abundance in the environment. Piezoelectric materials and piezoelectric–magnetostrictive [magnetoelectric (ME)] composites can be used to harvest vibration and magnetic field, respectively. Currently, such harvesters use modified lead zirconate titanate (or lead-based) piezoelectric materials and ME composites. However, environmental concerns and government regulations require the development of a suitable lead-free replacement for lead-based piezoelectric materials. In the past decade, several lead-free piezoelectric compositions have been developed and demonstrated with promising piezoelectric response. This paper reviews the significant results reported on lead-free piezoelectric materials with respect to high-density energy harvesting, covering novel processing techniques for improving the piezoelectric response and temperature stability. The review of the state-of-the-art studies on vibration and magnetic field harvesting is provided and the results are used to discuss various strategies for designing high-performance energy harvesting devices.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2018.172</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2018-08, Vol.33 (16), p.2235-2263
issn 0884-2914
2044-5326
language eng
recordid cdi_osti_scitechconnect_1541931
source Cambridge Journals - Connect here FIRST to enable access; Springer journals
subjects Applied and Technical Physics
Bandwidths
Biomaterials
Biomechanics
Composite materials
Data transfer (computers)
Electric fields
Electricity
Energy harvesting
Energy resources
Government regulations
Harvesters
Inorganic Chemistry
Internet of Things
Lead free
Lead zirconate titanates
Magnetic fields
Magnetostriction
Materials Engineering
Materials research
Materials Science
Medical equipment
Nanotechnology
Phase transitions
Piezoelectricity
Power sources
REVIEW
Sensors
State-of-the-art reviews
Temperature
Vibration
title Lead-free piezoelectric materials and composites for high power density energy harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A01%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lead-free%20piezoelectric%20materials%20and%20composites%20for%20high%20power%20density%20energy%20harvesting&rft.jtitle=Journal%20of%20materials%20research&rft.au=Maurya,%20Deepam&rft.aucorp=Virginia%20Polytechnic%20Inst.%20and%20State%20Univ.%20(Virginia%20Tech),%20Blacksburg,%20VA%20(United%20States)&rft.date=2018-08-28&rft.volume=33&rft.issue=16&rft.spage=2235&rft.epage=2263&rft.pages=2235-2263&rft.issn=0884-2914&rft.eissn=2044-5326&rft_id=info:doi/10.1557/jmr.2018.172&rft_dat=%3Cproquest_osti_%3E2094191471%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2094191471&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2018_172&rfr_iscdi=true