On the Linearity of Local and Regional Temperature Changes from 1.5°C to 2°C of Global Warming

Given the Paris Agreement it is imperative there is greater understanding of the consequences of limiting global warming to the target 1.5° and 2°C levels above preindustrial conditions. It is challenging to quantify changes across a small increment of global warming, so a pattern-scaling approach m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2018-09, Vol.31 (18), p.7495-7514
Hauptverfasser: King, Andrew D., Knutti, Reto, Uhe, Peter, Mitchell, Daniel M., Lewis, Sophie C., Arblaster, Julie M., Freychet, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7514
container_issue 18
container_start_page 7495
container_title Journal of climate
container_volume 31
creator King, Andrew D.
Knutti, Reto
Uhe, Peter
Mitchell, Daniel M.
Lewis, Sophie C.
Arblaster, Julie M.
Freychet, Nicolas
description Given the Paris Agreement it is imperative there is greater understanding of the consequences of limiting global warming to the target 1.5° and 2°C levels above preindustrial conditions. It is challenging to quantify changes across a small increment of global warming, so a pattern-scaling approach may be considered. Here we investigate the validity of such an approach by comprehensively examining how well local temperatures and warming trends in a 1.5°C world predict local temperatures at global warming of 2°C. Ensembles of transient coupled climate simulations from multiple models under different scenarios were compared and individual model responses were analyzed. For many places, the multimodel forced response of seasonal-average temperatures is approximately linear with global warming between 1.5° and 2°C. However, individual model results vary and large contributions from nonlinear changes in unforced variability or the forced response cannot be ruled out. In some regions, such as East Asia, models simulate substantially greater warming than is expected from linear scaling. Examining East Asia during boreal summer, we find that increased warming in the simulated 2°C world relative to scaling up from 1.5°C is related to reduced anthropogenic aerosol emissions. Our findings suggest that, where forcings other than those due to greenhouse gas emissions change, the warming experienced in a 1.5°C world is a poor predictor for local climate at 2°C of global warming. In addition to the analysis of the linearity in the forced climate change signal, we find that natural variability remains a substantial contribution to uncertainty at these low-warming targets.
doi_str_mv 10.1175/JCLI-D-17-0649.1
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1541846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26496677</jstor_id><sourcerecordid>26496677</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2771-b5689e55c75ae7c06cac24670c7727a46756589735a88b71c11af2dd8ae37ceb3</originalsourceid><addsrcrecordid>eNo9kM9KAzEQh4MoWP_cvQhBz1sz6SaTPcqqVVkQpOIxpmm23dJuapIefCufwSczpeJpZpjvG5gfIRfAhgAobp7r5qm4KwALJstqCAdkAIKzgpUlPyQDpqqyUCjEMTmJcckYcMnYgHy89DQtHG263pnQpS_qW9p4a1bU9DP66uad7_MwceuNCyZtg6P1wvRzF2kb_JrCUPx81zR5ync12-OVn2bj3YR118_PyFFrVtGd_9VT8vZwP6kfi-Zl_FTfNoXliFBMhVSVE8KiMA4tk9ZYXkpkFpGjyZ2QQlU4EkapKYIFMC2fzZRxI7RuOjolV_u7PqZOR9slZxfW972zSYMoQZUyQ9d7aBP859bFpJd-G_J_UfOcYqWkkDxTbE_Z4GMMrtWb0K1N-NLA9C5svQtb32lAvQtbQ1Yu98oyJh_-eZ63UiKOfgH3eXp3</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117986562</pqid></control><display><type>article</type><title>On the Linearity of Local and Regional Temperature Changes from 1.5°C to 2°C of Global Warming</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><creator>King, Andrew D. ; Knutti, Reto ; Uhe, Peter ; Mitchell, Daniel M. ; Lewis, Sophie C. ; Arblaster, Julie M. ; Freychet, Nicolas</creator><creatorcontrib>King, Andrew D. ; Knutti, Reto ; Uhe, Peter ; Mitchell, Daniel M. ; Lewis, Sophie C. ; Arblaster, Julie M. ; Freychet, Nicolas ; National Center for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><description>Given the Paris Agreement it is imperative there is greater understanding of the consequences of limiting global warming to the target 1.5° and 2°C levels above preindustrial conditions. It is challenging to quantify changes across a small increment of global warming, so a pattern-scaling approach may be considered. Here we investigate the validity of such an approach by comprehensively examining how well local temperatures and warming trends in a 1.5°C world predict local temperatures at global warming of 2°C. Ensembles of transient coupled climate simulations from multiple models under different scenarios were compared and individual model responses were analyzed. For many places, the multimodel forced response of seasonal-average temperatures is approximately linear with global warming between 1.5° and 2°C. However, individual model results vary and large contributions from nonlinear changes in unforced variability or the forced response cannot be ruled out. In some regions, such as East Asia, models simulate substantially greater warming than is expected from linear scaling. Examining East Asia during boreal summer, we find that increased warming in the simulated 2°C world relative to scaling up from 1.5°C is related to reduced anthropogenic aerosol emissions. Our findings suggest that, where forcings other than those due to greenhouse gas emissions change, the warming experienced in a 1.5°C world is a poor predictor for local climate at 2°C of global warming. In addition to the analysis of the linearity in the forced climate change signal, we find that natural variability remains a substantial contribution to uncertainty at these low-warming targets.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-17-0649.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Anthropogenic factors ; Climate change ; Climate models ; Computer simulation ; Emissions ; ENVIRONMENTAL SCIENCES ; Global warming ; Greenhouse effect ; Greenhouse gases ; Heat ; Linearity ; Local climates ; Model comparison ; Natural variability ; Paris Agreement ; Precipitation ; Scaling ; Temperature ; Temperature changes ; Variability</subject><ispartof>Journal of climate, 2018-09, Vol.31 (18), p.7495-7514</ispartof><rights>2018 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2771-b5689e55c75ae7c06cac24670c7727a46756589735a88b71c11af2dd8ae37ceb3</citedby><cites>FETCH-LOGICAL-c2771-b5689e55c75ae7c06cac24670c7727a46756589735a88b71c11af2dd8ae37ceb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26496677$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26496677$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,3667,27903,27904,57996,58229</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1541846$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>King, Andrew D.</creatorcontrib><creatorcontrib>Knutti, Reto</creatorcontrib><creatorcontrib>Uhe, Peter</creatorcontrib><creatorcontrib>Mitchell, Daniel M.</creatorcontrib><creatorcontrib>Lewis, Sophie C.</creatorcontrib><creatorcontrib>Arblaster, Julie M.</creatorcontrib><creatorcontrib>Freychet, Nicolas</creatorcontrib><creatorcontrib>National Center for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><title>On the Linearity of Local and Regional Temperature Changes from 1.5°C to 2°C of Global Warming</title><title>Journal of climate</title><description>Given the Paris Agreement it is imperative there is greater understanding of the consequences of limiting global warming to the target 1.5° and 2°C levels above preindustrial conditions. It is challenging to quantify changes across a small increment of global warming, so a pattern-scaling approach may be considered. Here we investigate the validity of such an approach by comprehensively examining how well local temperatures and warming trends in a 1.5°C world predict local temperatures at global warming of 2°C. Ensembles of transient coupled climate simulations from multiple models under different scenarios were compared and individual model responses were analyzed. For many places, the multimodel forced response of seasonal-average temperatures is approximately linear with global warming between 1.5° and 2°C. However, individual model results vary and large contributions from nonlinear changes in unforced variability or the forced response cannot be ruled out. In some regions, such as East Asia, models simulate substantially greater warming than is expected from linear scaling. Examining East Asia during boreal summer, we find that increased warming in the simulated 2°C world relative to scaling up from 1.5°C is related to reduced anthropogenic aerosol emissions. Our findings suggest that, where forcings other than those due to greenhouse gas emissions change, the warming experienced in a 1.5°C world is a poor predictor for local climate at 2°C of global warming. In addition to the analysis of the linearity in the forced climate change signal, we find that natural variability remains a substantial contribution to uncertainty at these low-warming targets.</description><subject>Anthropogenic factors</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Computer simulation</subject><subject>Emissions</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Global warming</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>Heat</subject><subject>Linearity</subject><subject>Local climates</subject><subject>Model comparison</subject><subject>Natural variability</subject><subject>Paris Agreement</subject><subject>Precipitation</subject><subject>Scaling</subject><subject>Temperature</subject><subject>Temperature changes</subject><subject>Variability</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNo9kM9KAzEQh4MoWP_cvQhBz1sz6SaTPcqqVVkQpOIxpmm23dJuapIefCufwSczpeJpZpjvG5gfIRfAhgAobp7r5qm4KwALJstqCAdkAIKzgpUlPyQDpqqyUCjEMTmJcckYcMnYgHy89DQtHG263pnQpS_qW9p4a1bU9DP66uad7_MwceuNCyZtg6P1wvRzF2kb_JrCUPx81zR5ync12-OVn2bj3YR118_PyFFrVtGd_9VT8vZwP6kfi-Zl_FTfNoXliFBMhVSVE8KiMA4tk9ZYXkpkFpGjyZ2QQlU4EkapKYIFMC2fzZRxI7RuOjolV_u7PqZOR9slZxfW972zSYMoQZUyQ9d7aBP859bFpJd-G_J_UfOcYqWkkDxTbE_Z4GMMrtWb0K1N-NLA9C5svQtb32lAvQtbQ1Yu98oyJh_-eZ63UiKOfgH3eXp3</recordid><startdate>20180915</startdate><enddate>20180915</enddate><creator>King, Andrew D.</creator><creator>Knutti, Reto</creator><creator>Uhe, Peter</creator><creator>Mitchell, Daniel M.</creator><creator>Lewis, Sophie C.</creator><creator>Arblaster, Julie M.</creator><creator>Freychet, Nicolas</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180915</creationdate><title>On the Linearity of Local and Regional Temperature Changes from 1.5°C to 2°C of Global Warming</title><author>King, Andrew D. ; Knutti, Reto ; Uhe, Peter ; Mitchell, Daniel M. ; Lewis, Sophie C. ; Arblaster, Julie M. ; Freychet, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2771-b5689e55c75ae7c06cac24670c7727a46756589735a88b71c11af2dd8ae37ceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anthropogenic factors</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Computer simulation</topic><topic>Emissions</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Global warming</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>Heat</topic><topic>Linearity</topic><topic>Local climates</topic><topic>Model comparison</topic><topic>Natural variability</topic><topic>Paris Agreement</topic><topic>Precipitation</topic><topic>Scaling</topic><topic>Temperature</topic><topic>Temperature changes</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>King, Andrew D.</creatorcontrib><creatorcontrib>Knutti, Reto</creatorcontrib><creatorcontrib>Uhe, Peter</creatorcontrib><creatorcontrib>Mitchell, Daniel M.</creatorcontrib><creatorcontrib>Lewis, Sophie C.</creatorcontrib><creatorcontrib>Arblaster, Julie M.</creatorcontrib><creatorcontrib>Freychet, Nicolas</creatorcontrib><creatorcontrib>National Center for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>King, Andrew D.</au><au>Knutti, Reto</au><au>Uhe, Peter</au><au>Mitchell, Daniel M.</au><au>Lewis, Sophie C.</au><au>Arblaster, Julie M.</au><au>Freychet, Nicolas</au><aucorp>National Center for Atmospheric Research, Boulder, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Linearity of Local and Regional Temperature Changes from 1.5°C to 2°C of Global Warming</atitle><jtitle>Journal of climate</jtitle><date>2018-09-15</date><risdate>2018</risdate><volume>31</volume><issue>18</issue><spage>7495</spage><epage>7514</epage><pages>7495-7514</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Given the Paris Agreement it is imperative there is greater understanding of the consequences of limiting global warming to the target 1.5° and 2°C levels above preindustrial conditions. It is challenging to quantify changes across a small increment of global warming, so a pattern-scaling approach may be considered. Here we investigate the validity of such an approach by comprehensively examining how well local temperatures and warming trends in a 1.5°C world predict local temperatures at global warming of 2°C. Ensembles of transient coupled climate simulations from multiple models under different scenarios were compared and individual model responses were analyzed. For many places, the multimodel forced response of seasonal-average temperatures is approximately linear with global warming between 1.5° and 2°C. However, individual model results vary and large contributions from nonlinear changes in unforced variability or the forced response cannot be ruled out. In some regions, such as East Asia, models simulate substantially greater warming than is expected from linear scaling. Examining East Asia during boreal summer, we find that increased warming in the simulated 2°C world relative to scaling up from 1.5°C is related to reduced anthropogenic aerosol emissions. Our findings suggest that, where forcings other than those due to greenhouse gas emissions change, the warming experienced in a 1.5°C world is a poor predictor for local climate at 2°C of global warming. In addition to the analysis of the linearity in the forced climate change signal, we find that natural variability remains a substantial contribution to uncertainty at these low-warming targets.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-17-0649.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2018-09, Vol.31 (18), p.7495-7514
issn 0894-8755
1520-0442
language eng
recordid cdi_osti_scitechconnect_1541846
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy
subjects Anthropogenic factors
Climate change
Climate models
Computer simulation
Emissions
ENVIRONMENTAL SCIENCES
Global warming
Greenhouse effect
Greenhouse gases
Heat
Linearity
Local climates
Model comparison
Natural variability
Paris Agreement
Precipitation
Scaling
Temperature
Temperature changes
Variability
title On the Linearity of Local and Regional Temperature Changes from 1.5°C to 2°C of Global Warming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A57%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Linearity%20of%20Local%20and%20Regional%20Temperature%20Changes%20from%201.5%C2%B0C%20to%202%C2%B0C%20of%20Global%20Warming&rft.jtitle=Journal%20of%20climate&rft.au=King,%20Andrew%20D.&rft.aucorp=National%20Center%20for%20Atmospheric%20Research,%20Boulder,%20CO%20(United%20States)&rft.date=2018-09-15&rft.volume=31&rft.issue=18&rft.spage=7495&rft.epage=7514&rft.pages=7495-7514&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-17-0649.1&rft_dat=%3Cjstor_osti_%3E26496677%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117986562&rft_id=info:pmid/&rft_jstor_id=26496677&rfr_iscdi=true