Exchange and correlation in finite-temperature TDDFT

We discuss the finite-temperature generalization of time-dependent density functional theory (TDDFT). The theory is directly analogous to that at temperature T = 0. For example, the finite- T TDDFT exchange-correlation kernel f xc ( T , n ) in the local density approximation can again be expressed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2018-07, Vol.91 (7), p.1-5, Article 153
Hauptverfasser: Rehr, John J., Kas, Joshua J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 7
container_start_page 1
container_title The European physical journal. B, Condensed matter physics
container_volume 91
creator Rehr, John J.
Kas, Joshua J.
description We discuss the finite-temperature generalization of time-dependent density functional theory (TDDFT). The theory is directly analogous to that at temperature T = 0. For example, the finite- T TDDFT exchange-correlation kernel f xc ( T , n ) in the local density approximation can again be expressed as a density derivative of the exchange correlation potential f xc ( T , n ) = [ ∂v xc ( T , n )∕ ∂n ] δ ( r − r ′ ), where n = N ∕ V is the electron number density. An approximation for the kernel f xc ( T , n ) is obtained from the finite- T generalization of the retarded cumulant expansion applied to the homogeneous electron gas. Results for f xc and the loss function are presented for a wide range of temperatures and densities including the warm dense matter regime, where T ≈ T F , the electron degeneracy temperature. The theory also permits a physical interpretation of the exchange and correlation contributions to the theory.
doi_str_mv 10.1140/epjb/e2018-90063-3
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1541756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A554689065</galeid><sourcerecordid>A554689065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-76691f6994700d5502d236ae2e36e8a4a65ffb9bd5dab38c2245b2a4619399603</originalsourceid><addsrcrecordid>eNp9kctKxDAUhosoeH0BV0VXLqq5t1nKXHRAEHRchzQ9HTPMpDXJgL69makos5EsEsL3H37Ol2WXGN1izNAd9Mv6DgjCVSERErSgB9kJZpQVAlFx-Psm1XF2GsISIYQFZicZm3yad-0WkGvX5KbzHlY62s7l1uWtdTZCEWHdg9dx4yGfj8fT-Xl21OpVgIuf-yx7m07mo8fi6flhNrp_KgyreCxKISRuhZSsRKjhHJGGUKGBABVQaaYFb9ta1g1vdE0rQwjjNdFMYEmlTMXPsqthbheiVcGkMubddM6BiQpzhksuEnQ9QL3vPjYQolp2G-9SL0XSJsoScyQTdTtQC70CZV3bRa9NOg2sbRoJrU3_95wzUUkkeArc7AUSE-EzLvQmBDV7fdlnycAa34XgoVW9t2vtvxRGautHbf2onR-186NoCtEhFBKcBPi_3v-kvgEKKJDp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063771509</pqid></control><display><type>article</type><title>Exchange and correlation in finite-temperature TDDFT</title><source>Springer Nature - Complete Springer Journals</source><creator>Rehr, John J. ; Kas, Joshua J.</creator><creatorcontrib>Rehr, John J. ; Kas, Joshua J. ; Univ. of Washington, Seattle, WA (United States)</creatorcontrib><description>We discuss the finite-temperature generalization of time-dependent density functional theory (TDDFT). The theory is directly analogous to that at temperature T = 0. For example, the finite- T TDDFT exchange-correlation kernel f xc ( T , n ) in the local density approximation can again be expressed as a density derivative of the exchange correlation potential f xc ( T , n ) = [ ∂v xc ( T , n )∕ ∂n ] δ ( r − r ′ ), where n = N ∕ V is the electron number density. An approximation for the kernel f xc ( T , n ) is obtained from the finite- T generalization of the retarded cumulant expansion applied to the homogeneous electron gas. Results for f xc and the loss function are presented for a wide range of temperatures and densities including the warm dense matter regime, where T ≈ T F , the electron degeneracy temperature. The theory also permits a physical interpretation of the exchange and correlation contributions to the theory.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2018-90063-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Complex Systems ; Condensed Matter Physics ; Correlation ; Density ; Density functional theory ; Electron gas ; Electrons ; Exchanging ; Fluid- and Aerodynamics ; Mathematical analysis ; Physics ; Physics and Astronomy ; Regular Article ; Solid State Physics ; Temperature ; Temperature dependence ; Time dependence ; Topical issue: Special issue in honor of Hardy Gross</subject><ispartof>The European physical journal. B, Condensed matter physics, 2018-07, Vol.91 (7), p.1-5, Article 153</ispartof><rights>EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-76691f6994700d5502d236ae2e36e8a4a65ffb9bd5dab38c2245b2a4619399603</citedby><cites>FETCH-LOGICAL-c485t-76691f6994700d5502d236ae2e36e8a4a65ffb9bd5dab38c2245b2a4619399603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2018-90063-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2018-90063-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1541756$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rehr, John J.</creatorcontrib><creatorcontrib>Kas, Joshua J.</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><title>Exchange and correlation in finite-temperature TDDFT</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>We discuss the finite-temperature generalization of time-dependent density functional theory (TDDFT). The theory is directly analogous to that at temperature T = 0. For example, the finite- T TDDFT exchange-correlation kernel f xc ( T , n ) in the local density approximation can again be expressed as a density derivative of the exchange correlation potential f xc ( T , n ) = [ ∂v xc ( T , n )∕ ∂n ] δ ( r − r ′ ), where n = N ∕ V is the electron number density. An approximation for the kernel f xc ( T , n ) is obtained from the finite- T generalization of the retarded cumulant expansion applied to the homogeneous electron gas. Results for f xc and the loss function are presented for a wide range of temperatures and densities including the warm dense matter regime, where T ≈ T F , the electron degeneracy temperature. The theory also permits a physical interpretation of the exchange and correlation contributions to the theory.</description><subject>Approximation</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Correlation</subject><subject>Density</subject><subject>Density functional theory</subject><subject>Electron gas</subject><subject>Electrons</subject><subject>Exchanging</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical analysis</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Time dependence</subject><subject>Topical issue: Special issue in honor of Hardy Gross</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kctKxDAUhosoeH0BV0VXLqq5t1nKXHRAEHRchzQ9HTPMpDXJgL69makos5EsEsL3H37Ol2WXGN1izNAd9Mv6DgjCVSERErSgB9kJZpQVAlFx-Psm1XF2GsISIYQFZicZm3yad-0WkGvX5KbzHlY62s7l1uWtdTZCEWHdg9dx4yGfj8fT-Xl21OpVgIuf-yx7m07mo8fi6flhNrp_KgyreCxKISRuhZSsRKjhHJGGUKGBABVQaaYFb9ta1g1vdE0rQwjjNdFMYEmlTMXPsqthbheiVcGkMubddM6BiQpzhksuEnQ9QL3vPjYQolp2G-9SL0XSJsoScyQTdTtQC70CZV3bRa9NOg2sbRoJrU3_95wzUUkkeArc7AUSE-EzLvQmBDV7fdlnycAa34XgoVW9t2vtvxRGautHbf2onR-186NoCtEhFBKcBPi_3v-kvgEKKJDp</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Rehr, John J.</creator><creator>Kas, Joshua J.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>OTOTI</scope></search><sort><creationdate>20180701</creationdate><title>Exchange and correlation in finite-temperature TDDFT</title><author>Rehr, John J. ; Kas, Joshua J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-76691f6994700d5502d236ae2e36e8a4a65ffb9bd5dab38c2245b2a4619399603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Approximation</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Correlation</topic><topic>Density</topic><topic>Density functional theory</topic><topic>Electron gas</topic><topic>Electrons</topic><topic>Exchanging</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical analysis</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Time dependence</topic><topic>Topical issue: Special issue in honor of Hardy Gross</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehr, John J.</creatorcontrib><creatorcontrib>Kas, Joshua J.</creatorcontrib><creatorcontrib>Univ. of Washington, Seattle, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>OSTI.GOV</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehr, John J.</au><au>Kas, Joshua J.</au><aucorp>Univ. of Washington, Seattle, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exchange and correlation in finite-temperature TDDFT</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>91</volume><issue>7</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><artnum>153</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>We discuss the finite-temperature generalization of time-dependent density functional theory (TDDFT). The theory is directly analogous to that at temperature T = 0. For example, the finite- T TDDFT exchange-correlation kernel f xc ( T , n ) in the local density approximation can again be expressed as a density derivative of the exchange correlation potential f xc ( T , n ) = [ ∂v xc ( T , n )∕ ∂n ] δ ( r − r ′ ), where n = N ∕ V is the electron number density. An approximation for the kernel f xc ( T , n ) is obtained from the finite- T generalization of the retarded cumulant expansion applied to the homogeneous electron gas. Results for f xc and the loss function are presented for a wide range of temperatures and densities including the warm dense matter regime, where T ≈ T F , the electron degeneracy temperature. The theory also permits a physical interpretation of the exchange and correlation contributions to the theory.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2018-90063-3</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2018-07, Vol.91 (7), p.1-5, Article 153
issn 1434-6028
1434-6036
language eng
recordid cdi_osti_scitechconnect_1541756
source Springer Nature - Complete Springer Journals
subjects Approximation
Complex Systems
Condensed Matter Physics
Correlation
Density
Density functional theory
Electron gas
Electrons
Exchanging
Fluid- and Aerodynamics
Mathematical analysis
Physics
Physics and Astronomy
Regular Article
Solid State Physics
Temperature
Temperature dependence
Time dependence
Topical issue: Special issue in honor of Hardy Gross
title Exchange and correlation in finite-temperature TDDFT
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A41%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exchange%20and%20correlation%20in%20finite-temperature%20TDDFT&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Rehr,%20John%20J.&rft.aucorp=Univ.%20of%20Washington,%20Seattle,%20WA%20(United%20States)&rft.date=2018-07-01&rft.volume=91&rft.issue=7&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.artnum=153&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2018-90063-3&rft_dat=%3Cgale_osti_%3EA554689065%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063771509&rft_id=info:pmid/&rft_galeid=A554689065&rfr_iscdi=true