A Kernel-Based Predictive Model of EV Capacity for Distributed Voltage Control and Demand Response

Energy storage and reactive power supplied by electric vehicles (EVs) through vehicle-to-grid (V2G) operation can be coordinated to provide voltage support, thus reducing the need of grid reinforcement and active power curtailment. Optimization and control approaches for V2G-enabled reactive power c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2018-07, Vol.9 (4), p.3180-3190
Hauptverfasser: Valizadeh Haghi, Hamed, Qu, Zhihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3190
container_issue 4
container_start_page 3180
container_title IEEE transactions on smart grid
container_volume 9
creator Valizadeh Haghi, Hamed
Qu, Zhihua
description Energy storage and reactive power supplied by electric vehicles (EVs) through vehicle-to-grid (V2G) operation can be coordinated to provide voltage support, thus reducing the need of grid reinforcement and active power curtailment. Optimization and control approaches for V2G-enabled reactive power control should be robust to variations and offer a certain level of optimality by combining real-time control with an hours-ahead scheduling scheme. This paper introduces an optimization and control framework that can be used for charging batteries and managing available storage while using the remaining capacity of the chargers to generate reactive power and cooperatively perform voltage control. Stochastic distributed optimization of reactive power is realized by integrating a robust distributed sub-gradient method with conditional ensemble predictions of V2G capacity. Hence, the proposed solutions can meet system operational requirements for the upcoming hours by enabling instantaneous cooperation among distributed EVs.
doi_str_mv 10.1109/TSG.2016.2628367
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_1541553</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7742938</ieee_id><sourcerecordid>10_1109_TSG_2016_2628367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-743db57e41024e72aaa7a424b39121d641c5838e261cc98325353550e9a33ab3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhhdRsNTeBS_B-9Ykk_3IsW61ihVFS68hm53VyHZTkij037ulpTOHmcPzDsOTJNeMThmj8m71uZhyyvIpz3kJeXGWjJgUMgWas_PTnsFlMgnhhw4FADmXo6SekRf0PXbpvQ7YkHePjTXR_iF5dQ12xLXkYU0qvdXGxh1pnSdzG6K39W8c-LXrov5CUrk-etcR3Tdkjpv9-MCwdX3Aq-Si1V3AyXGOk9Xjw6p6Spdvi-dqtkwNlzSmhYCmzgoUjHKBBddaF1pwUYNknDW5YCYroUSeM2NkCTyDoTOKUgPoGsbJ7eGsC9GqMHyL5tu4vkcTFcsEyzIYIHqAjHcheGzV1tuN9jvFqNqrVINKtVepjiqHyM0hYhHxhBeF4BJK-AdiCG2I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Kernel-Based Predictive Model of EV Capacity for Distributed Voltage Control and Demand Response</title><source>IEEE Electronic Library (IEL)</source><creator>Valizadeh Haghi, Hamed ; Qu, Zhihua</creator><creatorcontrib>Valizadeh Haghi, Hamed ; Qu, Zhihua ; Univ. of Central Florida, Orlando, FL (United States)</creatorcontrib><description>Energy storage and reactive power supplied by electric vehicles (EVs) through vehicle-to-grid (V2G) operation can be coordinated to provide voltage support, thus reducing the need of grid reinforcement and active power curtailment. Optimization and control approaches for V2G-enabled reactive power control should be robust to variations and offer a certain level of optimality by combining real-time control with an hours-ahead scheduling scheme. This paper introduces an optimization and control framework that can be used for charging batteries and managing available storage while using the remaining capacity of the chargers to generate reactive power and cooperatively perform voltage control. Stochastic distributed optimization of reactive power is realized by integrating a robust distributed sub-gradient method with conditional ensemble predictions of V2G capacity. Hence, the proposed solutions can meet system operational requirements for the upcoming hours by enabling instantaneous cooperation among distributed EVs.</description><identifier>ISSN: 1949-3053</identifier><identifier>EISSN: 1949-3061</identifier><identifier>DOI: 10.1109/TSG.2016.2628367</identifier><identifier>CODEN: ITSGBQ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Batteries ; Charging stations ; Coordinated voltage control ; distributed optimization ; electric vehicles ; Engineering ; Optimization ; Predictive models ; Reactive power ; stochastic process ; Uncertainty ; Voltage control</subject><ispartof>IEEE transactions on smart grid, 2018-07, Vol.9 (4), p.3180-3190</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-743db57e41024e72aaa7a424b39121d641c5838e261cc98325353550e9a33ab3</citedby><cites>FETCH-LOGICAL-c290t-743db57e41024e72aaa7a424b39121d641c5838e261cc98325353550e9a33ab3</cites><orcidid>0000-0002-6039-4828 ; 0000000260394828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7742938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7742938$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1541553$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Valizadeh Haghi, Hamed</creatorcontrib><creatorcontrib>Qu, Zhihua</creatorcontrib><creatorcontrib>Univ. of Central Florida, Orlando, FL (United States)</creatorcontrib><title>A Kernel-Based Predictive Model of EV Capacity for Distributed Voltage Control and Demand Response</title><title>IEEE transactions on smart grid</title><addtitle>TSG</addtitle><description>Energy storage and reactive power supplied by electric vehicles (EVs) through vehicle-to-grid (V2G) operation can be coordinated to provide voltage support, thus reducing the need of grid reinforcement and active power curtailment. Optimization and control approaches for V2G-enabled reactive power control should be robust to variations and offer a certain level of optimality by combining real-time control with an hours-ahead scheduling scheme. This paper introduces an optimization and control framework that can be used for charging batteries and managing available storage while using the remaining capacity of the chargers to generate reactive power and cooperatively perform voltage control. Stochastic distributed optimization of reactive power is realized by integrating a robust distributed sub-gradient method with conditional ensemble predictions of V2G capacity. Hence, the proposed solutions can meet system operational requirements for the upcoming hours by enabling instantaneous cooperation among distributed EVs.</description><subject>Batteries</subject><subject>Charging stations</subject><subject>Coordinated voltage control</subject><subject>distributed optimization</subject><subject>electric vehicles</subject><subject>Engineering</subject><subject>Optimization</subject><subject>Predictive models</subject><subject>Reactive power</subject><subject>stochastic process</subject><subject>Uncertainty</subject><subject>Voltage control</subject><issn>1949-3053</issn><issn>1949-3061</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhhdRsNTeBS_B-9Ykk_3IsW61ihVFS68hm53VyHZTkij037ulpTOHmcPzDsOTJNeMThmj8m71uZhyyvIpz3kJeXGWjJgUMgWas_PTnsFlMgnhhw4FADmXo6SekRf0PXbpvQ7YkHePjTXR_iF5dQ12xLXkYU0qvdXGxh1pnSdzG6K39W8c-LXrov5CUrk-etcR3Tdkjpv9-MCwdX3Aq-Si1V3AyXGOk9Xjw6p6Spdvi-dqtkwNlzSmhYCmzgoUjHKBBddaF1pwUYNknDW5YCYroUSeM2NkCTyDoTOKUgPoGsbJ7eGsC9GqMHyL5tu4vkcTFcsEyzIYIHqAjHcheGzV1tuN9jvFqNqrVINKtVepjiqHyM0hYhHxhBeF4BJK-AdiCG2I</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Valizadeh Haghi, Hamed</creator><creator>Qu, Zhihua</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6039-4828</orcidid><orcidid>https://orcid.org/0000000260394828</orcidid></search><sort><creationdate>201807</creationdate><title>A Kernel-Based Predictive Model of EV Capacity for Distributed Voltage Control and Demand Response</title><author>Valizadeh Haghi, Hamed ; Qu, Zhihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-743db57e41024e72aaa7a424b39121d641c5838e261cc98325353550e9a33ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Charging stations</topic><topic>Coordinated voltage control</topic><topic>distributed optimization</topic><topic>electric vehicles</topic><topic>Engineering</topic><topic>Optimization</topic><topic>Predictive models</topic><topic>Reactive power</topic><topic>stochastic process</topic><topic>Uncertainty</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valizadeh Haghi, Hamed</creatorcontrib><creatorcontrib>Qu, Zhihua</creatorcontrib><creatorcontrib>Univ. of Central Florida, Orlando, FL (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valizadeh Haghi, Hamed</au><au>Qu, Zhihua</au><aucorp>Univ. of Central Florida, Orlando, FL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kernel-Based Predictive Model of EV Capacity for Distributed Voltage Control and Demand Response</atitle><jtitle>IEEE transactions on smart grid</jtitle><stitle>TSG</stitle><date>2018-07</date><risdate>2018</risdate><volume>9</volume><issue>4</issue><spage>3180</spage><epage>3190</epage><pages>3180-3190</pages><issn>1949-3053</issn><eissn>1949-3061</eissn><coden>ITSGBQ</coden><abstract>Energy storage and reactive power supplied by electric vehicles (EVs) through vehicle-to-grid (V2G) operation can be coordinated to provide voltage support, thus reducing the need of grid reinforcement and active power curtailment. Optimization and control approaches for V2G-enabled reactive power control should be robust to variations and offer a certain level of optimality by combining real-time control with an hours-ahead scheduling scheme. This paper introduces an optimization and control framework that can be used for charging batteries and managing available storage while using the remaining capacity of the chargers to generate reactive power and cooperatively perform voltage control. Stochastic distributed optimization of reactive power is realized by integrating a robust distributed sub-gradient method with conditional ensemble predictions of V2G capacity. Hence, the proposed solutions can meet system operational requirements for the upcoming hours by enabling instantaneous cooperation among distributed EVs.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TSG.2016.2628367</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6039-4828</orcidid><orcidid>https://orcid.org/0000000260394828</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2018-07, Vol.9 (4), p.3180-3190
issn 1949-3053
1949-3061
language eng
recordid cdi_osti_scitechconnect_1541553
source IEEE Electronic Library (IEL)
subjects Batteries
Charging stations
Coordinated voltage control
distributed optimization
electric vehicles
Engineering
Optimization
Predictive models
Reactive power
stochastic process
Uncertainty
Voltage control
title A Kernel-Based Predictive Model of EV Capacity for Distributed Voltage Control and Demand Response
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kernel-Based%20Predictive%20Model%20of%20EV%20Capacity%20for%20Distributed%20Voltage%20Control%20and%20Demand%20Response&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Valizadeh%20Haghi,%20Hamed&rft.aucorp=Univ.%20of%20Central%20Florida,%20Orlando,%20FL%20(United%20States)&rft.date=2018-07&rft.volume=9&rft.issue=4&rft.spage=3180&rft.epage=3190&rft.pages=3180-3190&rft.issn=1949-3053&rft.eissn=1949-3061&rft.coden=ITSGBQ&rft_id=info:doi/10.1109/TSG.2016.2628367&rft_dat=%3Ccrossref_RIE%3E10_1109_TSG_2016_2628367%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=7742938&rfr_iscdi=true