High-Field Magnetoresistance of Organic Semiconductors
The magnetoelectronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge-carrier pairs due to small differences in their Landé g factors that arise from the weak spin-orbit coupling in the...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2018-08, Vol.10 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physical review applied |
container_volume | 10 |
creator | Joshi, G. Teferi, M. Y. Miller, R. Jamali, S. Groesbeck, M. van Tol, J. McLaughlin, R. Vardeny, Z. V. Lupton, J. M. Malissa, H. Boehme, C. |
description | The magnetoelectronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge-carrier pairs due to small differences in their Landé g factors that arise from the weak spin-orbit coupling in the material. In this work, we corroborate theoretical models for the high-field magnetoresistance of organic semiconductors, in particular of diodes made of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) at low temperatures, by conducting magnetoresistance measurements along with multifrequency continuous-wave electrically detected magnetic-resonance experiments. The measurements are performed on identical devices under similar conditions in order to independently assess the magnetic-field-dependent spin-mixing mechanism, the so-called Δg mechanism. Finally, an understanding of the microscopic origin of magnetoresistance in organic semiconductors is crucial for developing reliable magnetometer devices capable of operating over a broad range of magnetic fields of order 10-7 - 10 T. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1540691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1540691</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15406913</originalsourceid><addsrcrecordid>eNqNyj0LwjAQgOEgChbtfwjuhUu_tLNYuoiD7iVcr-1JTaAX_78dHByd3nd4VipKs8wkRzDV-ue3KhZ5AoAxaQEniFTZ8DAmNdPU6asdHAU_k7AE65C07_VtHqxj1Hd6MXrXvXERsleb3k5C8bc7dagvj3OTeAncCnIgHBfuCENrihzKymR_oQ-2zzdC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Field Magnetoresistance of Organic Semiconductors</title><source>American Physical Society Journals</source><creator>Joshi, G. ; Teferi, M. Y. ; Miller, R. ; Jamali, S. ; Groesbeck, M. ; van Tol, J. ; McLaughlin, R. ; Vardeny, Z. V. ; Lupton, J. M. ; Malissa, H. ; Boehme, C.</creator><creatorcontrib>Joshi, G. ; Teferi, M. Y. ; Miller, R. ; Jamali, S. ; Groesbeck, M. ; van Tol, J. ; McLaughlin, R. ; Vardeny, Z. V. ; Lupton, J. M. ; Malissa, H. ; Boehme, C. ; Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><description>The magnetoelectronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge-carrier pairs due to small differences in their Landé g factors that arise from the weak spin-orbit coupling in the material. In this work, we corroborate theoretical models for the high-field magnetoresistance of organic semiconductors, in particular of diodes made of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) at low temperatures, by conducting magnetoresistance measurements along with multifrequency continuous-wave electrically detected magnetic-resonance experiments. The measurements are performed on identical devices under similar conditions in order to independently assess the magnetic-field-dependent spin-mixing mechanism, the so-called Δg mechanism. Finally, an understanding of the microscopic origin of magnetoresistance in organic semiconductors is crucial for developing reliable magnetometer devices capable of operating over a broad range of magnetic fields of order 10-7 - 10 T.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; electron spin resonance ; magnetoresistance ; optoelectronics ; organic LEDs ; organic semiconductors ; organic sensors ; physics ; solid-state detectors ; spin-orbit coupling</subject><ispartof>Physical review applied, 2018-08, Vol.10 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1540691$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Joshi, G.</creatorcontrib><creatorcontrib>Teferi, M. Y.</creatorcontrib><creatorcontrib>Miller, R.</creatorcontrib><creatorcontrib>Jamali, S.</creatorcontrib><creatorcontrib>Groesbeck, M.</creatorcontrib><creatorcontrib>van Tol, J.</creatorcontrib><creatorcontrib>McLaughlin, R.</creatorcontrib><creatorcontrib>Vardeny, Z. V.</creatorcontrib><creatorcontrib>Lupton, J. M.</creatorcontrib><creatorcontrib>Malissa, H.</creatorcontrib><creatorcontrib>Boehme, C.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><title>High-Field Magnetoresistance of Organic Semiconductors</title><title>Physical review applied</title><description>The magnetoelectronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge-carrier pairs due to small differences in their Landé g factors that arise from the weak spin-orbit coupling in the material. In this work, we corroborate theoretical models for the high-field magnetoresistance of organic semiconductors, in particular of diodes made of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) at low temperatures, by conducting magnetoresistance measurements along with multifrequency continuous-wave electrically detected magnetic-resonance experiments. The measurements are performed on identical devices under similar conditions in order to independently assess the magnetic-field-dependent spin-mixing mechanism, the so-called Δg mechanism. Finally, an understanding of the microscopic origin of magnetoresistance in organic semiconductors is crucial for developing reliable magnetometer devices capable of operating over a broad range of magnetic fields of order 10-7 - 10 T.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>electron spin resonance</subject><subject>magnetoresistance</subject><subject>optoelectronics</subject><subject>organic LEDs</subject><subject>organic semiconductors</subject><subject>organic sensors</subject><subject>physics</subject><subject>solid-state detectors</subject><subject>spin-orbit coupling</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNyj0LwjAQgOEgChbtfwjuhUu_tLNYuoiD7iVcr-1JTaAX_78dHByd3nd4VipKs8wkRzDV-ue3KhZ5AoAxaQEniFTZ8DAmNdPU6asdHAU_k7AE65C07_VtHqxj1Hd6MXrXvXERsleb3k5C8bc7dagvj3OTeAncCnIgHBfuCENrihzKymR_oQ-2zzdC</recordid><startdate>20180809</startdate><enddate>20180809</enddate><creator>Joshi, G.</creator><creator>Teferi, M. Y.</creator><creator>Miller, R.</creator><creator>Jamali, S.</creator><creator>Groesbeck, M.</creator><creator>van Tol, J.</creator><creator>McLaughlin, R.</creator><creator>Vardeny, Z. V.</creator><creator>Lupton, J. M.</creator><creator>Malissa, H.</creator><creator>Boehme, C.</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180809</creationdate><title>High-Field Magnetoresistance of Organic Semiconductors</title><author>Joshi, G. ; Teferi, M. Y. ; Miller, R. ; Jamali, S. ; Groesbeck, M. ; van Tol, J. ; McLaughlin, R. ; Vardeny, Z. V. ; Lupton, J. M. ; Malissa, H. ; Boehme, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15406913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>electron spin resonance</topic><topic>magnetoresistance</topic><topic>optoelectronics</topic><topic>organic LEDs</topic><topic>organic semiconductors</topic><topic>organic sensors</topic><topic>physics</topic><topic>solid-state detectors</topic><topic>spin-orbit coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, G.</creatorcontrib><creatorcontrib>Teferi, M. Y.</creatorcontrib><creatorcontrib>Miller, R.</creatorcontrib><creatorcontrib>Jamali, S.</creatorcontrib><creatorcontrib>Groesbeck, M.</creatorcontrib><creatorcontrib>van Tol, J.</creatorcontrib><creatorcontrib>McLaughlin, R.</creatorcontrib><creatorcontrib>Vardeny, Z. V.</creatorcontrib><creatorcontrib>Lupton, J. M.</creatorcontrib><creatorcontrib>Malissa, H.</creatorcontrib><creatorcontrib>Boehme, C.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, G.</au><au>Teferi, M. Y.</au><au>Miller, R.</au><au>Jamali, S.</au><au>Groesbeck, M.</au><au>van Tol, J.</au><au>McLaughlin, R.</au><au>Vardeny, Z. V.</au><au>Lupton, J. M.</au><au>Malissa, H.</au><au>Boehme, C.</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Field Magnetoresistance of Organic Semiconductors</atitle><jtitle>Physical review applied</jtitle><date>2018-08-09</date><risdate>2018</risdate><volume>10</volume><issue>2</issue><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>The magnetoelectronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge-carrier pairs due to small differences in their Landé g factors that arise from the weak spin-orbit coupling in the material. In this work, we corroborate theoretical models for the high-field magnetoresistance of organic semiconductors, in particular of diodes made of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) at low temperatures, by conducting magnetoresistance measurements along with multifrequency continuous-wave electrically detected magnetic-resonance experiments. The measurements are performed on identical devices under similar conditions in order to independently assess the magnetic-field-dependent spin-mixing mechanism, the so-called Δg mechanism. Finally, an understanding of the microscopic origin of magnetoresistance in organic semiconductors is crucial for developing reliable magnetometer devices capable of operating over a broad range of magnetic fields of order 10-7 - 10 T.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-7019 |
ispartof | Physical review applied, 2018-08, Vol.10 (2) |
issn | 2331-7019 2331-7019 |
language | eng |
recordid | cdi_osti_scitechconnect_1540691 |
source | American Physical Society Journals |
subjects | CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY electron spin resonance magnetoresistance optoelectronics organic LEDs organic semiconductors organic sensors physics solid-state detectors spin-orbit coupling |
title | High-Field Magnetoresistance of Organic Semiconductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Field%20Magnetoresistance%20of%20Organic%20Semiconductors&rft.jtitle=Physical%20review%20applied&rft.au=Joshi,%20G.&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2018-08-09&rft.volume=10&rft.issue=2&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/&rft_dat=%3Costi%3E1540691%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |