High-Field Magnetoresistance of Organic Semiconductors

The magnetoelectronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge-carrier pairs due to small differences in their Landé g factors that arise from the weak spin-orbit coupling in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review applied 2018-08, Vol.10 (2)
Hauptverfasser: Joshi, G., Teferi, M. Y., Miller, R., Jamali, S., Groesbeck, M., van Tol, J., McLaughlin, R., Vardeny, Z. V., Lupton, J. M., Malissa, H., Boehme, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physical review applied
container_volume 10
creator Joshi, G.
Teferi, M. Y.
Miller, R.
Jamali, S.
Groesbeck, M.
van Tol, J.
McLaughlin, R.
Vardeny, Z. V.
Lupton, J. M.
Malissa, H.
Boehme, C.
description The magnetoelectronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge-carrier pairs due to small differences in their Landé g factors that arise from the weak spin-orbit coupling in the material. In this work, we corroborate theoretical models for the high-field magnetoresistance of organic semiconductors, in particular of diodes made of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) at low temperatures, by conducting magnetoresistance measurements along with multifrequency continuous-wave electrically detected magnetic-resonance experiments. The measurements are performed on identical devices under similar conditions in order to independently assess the magnetic-field-dependent spin-mixing mechanism, the so-called Δg mechanism. Finally, an understanding of the microscopic origin of magnetoresistance in organic semiconductors is crucial for developing reliable magnetometer devices capable of operating over a broad range of magnetic fields of order 10-7 - 10 T.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1540691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1540691</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15406913</originalsourceid><addsrcrecordid>eNqNyj0LwjAQgOEgChbtfwjuhUu_tLNYuoiD7iVcr-1JTaAX_78dHByd3nd4VipKs8wkRzDV-ue3KhZ5AoAxaQEniFTZ8DAmNdPU6asdHAU_k7AE65C07_VtHqxj1Hd6MXrXvXERsleb3k5C8bc7dagvj3OTeAncCnIgHBfuCENrihzKymR_oQ-2zzdC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-Field Magnetoresistance of Organic Semiconductors</title><source>American Physical Society Journals</source><creator>Joshi, G. ; Teferi, M. Y. ; Miller, R. ; Jamali, S. ; Groesbeck, M. ; van Tol, J. ; McLaughlin, R. ; Vardeny, Z. V. ; Lupton, J. M. ; Malissa, H. ; Boehme, C.</creator><creatorcontrib>Joshi, G. ; Teferi, M. Y. ; Miller, R. ; Jamali, S. ; Groesbeck, M. ; van Tol, J. ; McLaughlin, R. ; Vardeny, Z. V. ; Lupton, J. M. ; Malissa, H. ; Boehme, C. ; Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><description>The magnetoelectronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge-carrier pairs due to small differences in their Landé g factors that arise from the weak spin-orbit coupling in the material. In this work, we corroborate theoretical models for the high-field magnetoresistance of organic semiconductors, in particular of diodes made of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) at low temperatures, by conducting magnetoresistance measurements along with multifrequency continuous-wave electrically detected magnetic-resonance experiments. The measurements are performed on identical devices under similar conditions in order to independently assess the magnetic-field-dependent spin-mixing mechanism, the so-called Δg mechanism. Finally, an understanding of the microscopic origin of magnetoresistance in organic semiconductors is crucial for developing reliable magnetometer devices capable of operating over a broad range of magnetic fields of order 10-7 - 10 T.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; electron spin resonance ; magnetoresistance ; optoelectronics ; organic LEDs ; organic semiconductors ; organic sensors ; physics ; solid-state detectors ; spin-orbit coupling</subject><ispartof>Physical review applied, 2018-08, Vol.10 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1540691$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Joshi, G.</creatorcontrib><creatorcontrib>Teferi, M. Y.</creatorcontrib><creatorcontrib>Miller, R.</creatorcontrib><creatorcontrib>Jamali, S.</creatorcontrib><creatorcontrib>Groesbeck, M.</creatorcontrib><creatorcontrib>van Tol, J.</creatorcontrib><creatorcontrib>McLaughlin, R.</creatorcontrib><creatorcontrib>Vardeny, Z. V.</creatorcontrib><creatorcontrib>Lupton, J. M.</creatorcontrib><creatorcontrib>Malissa, H.</creatorcontrib><creatorcontrib>Boehme, C.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><title>High-Field Magnetoresistance of Organic Semiconductors</title><title>Physical review applied</title><description>The magnetoelectronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge-carrier pairs due to small differences in their Landé g factors that arise from the weak spin-orbit coupling in the material. In this work, we corroborate theoretical models for the high-field magnetoresistance of organic semiconductors, in particular of diodes made of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) at low temperatures, by conducting magnetoresistance measurements along with multifrequency continuous-wave electrically detected magnetic-resonance experiments. The measurements are performed on identical devices under similar conditions in order to independently assess the magnetic-field-dependent spin-mixing mechanism, the so-called Δg mechanism. Finally, an understanding of the microscopic origin of magnetoresistance in organic semiconductors is crucial for developing reliable magnetometer devices capable of operating over a broad range of magnetic fields of order 10-7 - 10 T.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>electron spin resonance</subject><subject>magnetoresistance</subject><subject>optoelectronics</subject><subject>organic LEDs</subject><subject>organic semiconductors</subject><subject>organic sensors</subject><subject>physics</subject><subject>solid-state detectors</subject><subject>spin-orbit coupling</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNyj0LwjAQgOEgChbtfwjuhUu_tLNYuoiD7iVcr-1JTaAX_78dHByd3nd4VipKs8wkRzDV-ue3KhZ5AoAxaQEniFTZ8DAmNdPU6asdHAU_k7AE65C07_VtHqxj1Hd6MXrXvXERsleb3k5C8bc7dagvj3OTeAncCnIgHBfuCENrihzKymR_oQ-2zzdC</recordid><startdate>20180809</startdate><enddate>20180809</enddate><creator>Joshi, G.</creator><creator>Teferi, M. Y.</creator><creator>Miller, R.</creator><creator>Jamali, S.</creator><creator>Groesbeck, M.</creator><creator>van Tol, J.</creator><creator>McLaughlin, R.</creator><creator>Vardeny, Z. V.</creator><creator>Lupton, J. M.</creator><creator>Malissa, H.</creator><creator>Boehme, C.</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20180809</creationdate><title>High-Field Magnetoresistance of Organic Semiconductors</title><author>Joshi, G. ; Teferi, M. Y. ; Miller, R. ; Jamali, S. ; Groesbeck, M. ; van Tol, J. ; McLaughlin, R. ; Vardeny, Z. V. ; Lupton, J. M. ; Malissa, H. ; Boehme, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15406913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>electron spin resonance</topic><topic>magnetoresistance</topic><topic>optoelectronics</topic><topic>organic LEDs</topic><topic>organic semiconductors</topic><topic>organic sensors</topic><topic>physics</topic><topic>solid-state detectors</topic><topic>spin-orbit coupling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, G.</creatorcontrib><creatorcontrib>Teferi, M. Y.</creatorcontrib><creatorcontrib>Miller, R.</creatorcontrib><creatorcontrib>Jamali, S.</creatorcontrib><creatorcontrib>Groesbeck, M.</creatorcontrib><creatorcontrib>van Tol, J.</creatorcontrib><creatorcontrib>McLaughlin, R.</creatorcontrib><creatorcontrib>Vardeny, Z. V.</creatorcontrib><creatorcontrib>Lupton, J. M.</creatorcontrib><creatorcontrib>Malissa, H.</creatorcontrib><creatorcontrib>Boehme, C.</creatorcontrib><creatorcontrib>Univ. of Utah, Salt Lake City, UT (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, G.</au><au>Teferi, M. Y.</au><au>Miller, R.</au><au>Jamali, S.</au><au>Groesbeck, M.</au><au>van Tol, J.</au><au>McLaughlin, R.</au><au>Vardeny, Z. V.</au><au>Lupton, J. M.</au><au>Malissa, H.</au><au>Boehme, C.</au><aucorp>Univ. of Utah, Salt Lake City, UT (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Field Magnetoresistance of Organic Semiconductors</atitle><jtitle>Physical review applied</jtitle><date>2018-08-09</date><risdate>2018</risdate><volume>10</volume><issue>2</issue><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>The magnetoelectronic field effects in organic semiconductors at high magnetic fields are described by field-dependent mixing between singlet and triplet states of weakly bound charge-carrier pairs due to small differences in their Landé g factors that arise from the weak spin-orbit coupling in the material. In this work, we corroborate theoretical models for the high-field magnetoresistance of organic semiconductors, in particular of diodes made of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) at low temperatures, by conducting magnetoresistance measurements along with multifrequency continuous-wave electrically detected magnetic-resonance experiments. The measurements are performed on identical devices under similar conditions in order to independently assess the magnetic-field-dependent spin-mixing mechanism, the so-called Δg mechanism. Finally, an understanding of the microscopic origin of magnetoresistance in organic semiconductors is crucial for developing reliable magnetometer devices capable of operating over a broad range of magnetic fields of order 10-7 - 10 T.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2331-7019
ispartof Physical review applied, 2018-08, Vol.10 (2)
issn 2331-7019
2331-7019
language eng
recordid cdi_osti_scitechconnect_1540691
source American Physical Society Journals
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
electron spin resonance
magnetoresistance
optoelectronics
organic LEDs
organic semiconductors
organic sensors
physics
solid-state detectors
spin-orbit coupling
title High-Field Magnetoresistance of Organic Semiconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A11%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Field%20Magnetoresistance%20of%20Organic%20Semiconductors&rft.jtitle=Physical%20review%20applied&rft.au=Joshi,%20G.&rft.aucorp=Univ.%20of%20Utah,%20Salt%20Lake%20City,%20UT%20(United%20States)&rft.date=2018-08-09&rft.volume=10&rft.issue=2&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/&rft_dat=%3Costi%3E1540691%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true