Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons

Non-perturbative coupling of photons and excitons produces hybrid particles, exciton–polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon–exciton coupling, is usually a single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2018-06, Vol.12 (6), p.362-367
Hauptverfasser: Gao, Weilu, Li, Xinwei, Bamba, Motoaki, Kono, Junichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 367
container_issue 6
container_start_page 362
container_title Nature photonics
container_volume 12
creator Gao, Weilu
Li, Xinwei
Bamba, Motoaki
Kono, Junichiro
description Non-perturbative coupling of photons and excitons produces hybrid particles, exciton–polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon–exciton coupling, is usually a single constant for a given system. Here, we have developed a unique architecture in which excitons in an aligned single-chirality carbon nanotube film interact with cavity photons in polarization-dependent manners. The system reveals ultrastrong coupling (VRS up to 329 meV or a coupling-strength-to-transition-energy ratio of 13.3%) for polarization parallel to the nanotube axis, whereas VRS is absent for perpendicular polarization. Between these two extremes, VRS is continuously tunable through polarization rotation with exceptional points separating crossing and anticrossing. The points between exceptional points form equienergy arcs onto which the upper and lower polaritons coalesce. The demonstrated on-demand ultrastrong coupling provides ways to explore topological properties of polaritons and quantum technology applications. A microcavity exciton–polariton system based on aligned and packed single-walled carbon nanotubes exhibits ultrastrong coupling. The coupling strength is polarization sensitive. The record high value of vacuum Rabi splitting, 329 meV, is reported.
doi_str_mv 10.1038/s41566-018-0157-9
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2046589575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-2e6a9b4aadbd94a0ebfa613dea4fa72e559a7cd7e56a60083dc1d9846e9c6ff63</originalsourceid><addsrcrecordid>eNp1kbFu1jAUhSNEpZbSB-hm0TlgJ7Zjj9UvaJEqsdDZunFu_t8ltYPtULp1Zu0b9klwFAQTg-Uj-TtH9_pU1Tmj7xlt1YfEmZCypkyVI7pav6pOWMd1zZVuX__VShxXb1K6o1S0umlOql-74LPzS1gSyRF8ctkFT3rMD4iePCB8I-AHskzlNeUY_J7YsMyTKyIfYlj2B4I_Lc6rDyYyB-dzIs4TC7EvUR58yEuP5N7ZGCz8cPlxdbgc_MvT8xwmiKtOb6ujEaaEZ3_u0-r208evu-v65svV593lTW25aHLdoATdc4ChHzQHiv0IkrUDAh-ha1AIDZ0dOhQSJKWqHSwbtOIStZXjKNvT6t2WG1J2JpVB0B5s8B5tNqz8i2pVgS42aI7h-4Ipm7uwxLJgMg3lUigtOlEotlFls5QijmaO7h7io2HUrL2YrRdTejFrL0YXT7N5UmH9HuO_5P-bfgOWyZbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046589575</pqid></control><display><type>article</type><title>Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Gao, Weilu ; Li, Xinwei ; Bamba, Motoaki ; Kono, Junichiro</creator><creatorcontrib>Gao, Weilu ; Li, Xinwei ; Bamba, Motoaki ; Kono, Junichiro ; Rice Univ., Houston, TX (United States)</creatorcontrib><description>Non-perturbative coupling of photons and excitons produces hybrid particles, exciton–polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon–exciton coupling, is usually a single constant for a given system. Here, we have developed a unique architecture in which excitons in an aligned single-chirality carbon nanotube film interact with cavity photons in polarization-dependent manners. The system reveals ultrastrong coupling (VRS up to 329 meV or a coupling-strength-to-transition-energy ratio of 13.3%) for polarization parallel to the nanotube axis, whereas VRS is absent for perpendicular polarization. Between these two extremes, VRS is continuously tunable through polarization rotation with exceptional points separating crossing and anticrossing. The points between exceptional points form equienergy arcs onto which the upper and lower polaritons coalesce. The demonstrated on-demand ultrastrong coupling provides ways to explore topological properties of polaritons and quantum technology applications. A microcavity exciton–polariton system based on aligned and packed single-walled carbon nanotubes exhibits ultrastrong coupling. The coupling strength is polarization sensitive. The record high value of vacuum Rabi splitting, 329 meV, is reported.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-018-0157-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/73 ; 639/766/119 ; 639/766/483 ; Applied and Technical Physics ; Carbon nanotubes ; Chirality ; Coalescing ; Coupling ; Excitons ; Nanotubes ; Optics ; Photons ; Physics ; Physics and Astronomy ; Polaritons ; Polarization ; Quantum Physics ; Vacuum</subject><ispartof>Nature photonics, 2018-06, Vol.12 (6), p.362-367</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-2e6a9b4aadbd94a0ebfa613dea4fa72e559a7cd7e56a60083dc1d9846e9c6ff63</citedby><cites>FETCH-LOGICAL-c452t-2e6a9b4aadbd94a0ebfa613dea4fa72e559a7cd7e56a60083dc1d9846e9c6ff63</cites><orcidid>0000-0002-4195-0577 ; 0000-0003-3139-034X ; 0000-0001-9811-0416 ; 0000000241950577 ; 000000033139034X ; 0000000198110416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1539838$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Weilu</creatorcontrib><creatorcontrib>Li, Xinwei</creatorcontrib><creatorcontrib>Bamba, Motoaki</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><title>Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Non-perturbative coupling of photons and excitons produces hybrid particles, exciton–polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon–exciton coupling, is usually a single constant for a given system. Here, we have developed a unique architecture in which excitons in an aligned single-chirality carbon nanotube film interact with cavity photons in polarization-dependent manners. The system reveals ultrastrong coupling (VRS up to 329 meV or a coupling-strength-to-transition-energy ratio of 13.3%) for polarization parallel to the nanotube axis, whereas VRS is absent for perpendicular polarization. Between these two extremes, VRS is continuously tunable through polarization rotation with exceptional points separating crossing and anticrossing. The points between exceptional points form equienergy arcs onto which the upper and lower polaritons coalesce. The demonstrated on-demand ultrastrong coupling provides ways to explore topological properties of polaritons and quantum technology applications. A microcavity exciton–polariton system based on aligned and packed single-walled carbon nanotubes exhibits ultrastrong coupling. The coupling strength is polarization sensitive. The record high value of vacuum Rabi splitting, 329 meV, is reported.</description><subject>639/624/399/73</subject><subject>639/766/119</subject><subject>639/766/483</subject><subject>Applied and Technical Physics</subject><subject>Carbon nanotubes</subject><subject>Chirality</subject><subject>Coalescing</subject><subject>Coupling</subject><subject>Excitons</subject><subject>Nanotubes</subject><subject>Optics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polaritons</subject><subject>Polarization</subject><subject>Quantum Physics</subject><subject>Vacuum</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kbFu1jAUhSNEpZbSB-hm0TlgJ7Zjj9UvaJEqsdDZunFu_t8ltYPtULp1Zu0b9klwFAQTg-Uj-TtH9_pU1Tmj7xlt1YfEmZCypkyVI7pav6pOWMd1zZVuX__VShxXb1K6o1S0umlOql-74LPzS1gSyRF8ctkFT3rMD4iePCB8I-AHskzlNeUY_J7YsMyTKyIfYlj2B4I_Lc6rDyYyB-dzIs4TC7EvUR58yEuP5N7ZGCz8cPlxdbgc_MvT8xwmiKtOb6ujEaaEZ3_u0-r208evu-v65svV593lTW25aHLdoATdc4ChHzQHiv0IkrUDAh-ha1AIDZ0dOhQSJKWqHSwbtOIStZXjKNvT6t2WG1J2JpVB0B5s8B5tNqz8i2pVgS42aI7h-4Ipm7uwxLJgMg3lUigtOlEotlFls5QijmaO7h7io2HUrL2YrRdTejFrL0YXT7N5UmH9HuO_5P-bfgOWyZbg</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Gao, Weilu</creator><creator>Li, Xinwei</creator><creator>Bamba, Motoaki</creator><creator>Kono, Junichiro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4195-0577</orcidid><orcidid>https://orcid.org/0000-0003-3139-034X</orcidid><orcidid>https://orcid.org/0000-0001-9811-0416</orcidid><orcidid>https://orcid.org/0000000241950577</orcidid><orcidid>https://orcid.org/000000033139034X</orcidid><orcidid>https://orcid.org/0000000198110416</orcidid></search><sort><creationdate>20180601</creationdate><title>Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons</title><author>Gao, Weilu ; Li, Xinwei ; Bamba, Motoaki ; Kono, Junichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-2e6a9b4aadbd94a0ebfa613dea4fa72e559a7cd7e56a60083dc1d9846e9c6ff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624/399/73</topic><topic>639/766/119</topic><topic>639/766/483</topic><topic>Applied and Technical Physics</topic><topic>Carbon nanotubes</topic><topic>Chirality</topic><topic>Coalescing</topic><topic>Coupling</topic><topic>Excitons</topic><topic>Nanotubes</topic><topic>Optics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polaritons</topic><topic>Polarization</topic><topic>Quantum Physics</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Weilu</creatorcontrib><creatorcontrib>Li, Xinwei</creatorcontrib><creatorcontrib>Bamba, Motoaki</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Weilu</au><au>Li, Xinwei</au><au>Bamba, Motoaki</au><au>Kono, Junichiro</au><aucorp>Rice Univ., Houston, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>12</volume><issue>6</issue><spage>362</spage><epage>367</epage><pages>362-367</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Non-perturbative coupling of photons and excitons produces hybrid particles, exciton–polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon–exciton coupling, is usually a single constant for a given system. Here, we have developed a unique architecture in which excitons in an aligned single-chirality carbon nanotube film interact with cavity photons in polarization-dependent manners. The system reveals ultrastrong coupling (VRS up to 329 meV or a coupling-strength-to-transition-energy ratio of 13.3%) for polarization parallel to the nanotube axis, whereas VRS is absent for perpendicular polarization. Between these two extremes, VRS is continuously tunable through polarization rotation with exceptional points separating crossing and anticrossing. The points between exceptional points form equienergy arcs onto which the upper and lower polaritons coalesce. The demonstrated on-demand ultrastrong coupling provides ways to explore topological properties of polaritons and quantum technology applications. A microcavity exciton–polariton system based on aligned and packed single-walled carbon nanotubes exhibits ultrastrong coupling. The coupling strength is polarization sensitive. The record high value of vacuum Rabi splitting, 329 meV, is reported.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-018-0157-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4195-0577</orcidid><orcidid>https://orcid.org/0000-0003-3139-034X</orcidid><orcidid>https://orcid.org/0000-0001-9811-0416</orcidid><orcidid>https://orcid.org/0000000241950577</orcidid><orcidid>https://orcid.org/000000033139034X</orcidid><orcidid>https://orcid.org/0000000198110416</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2018-06, Vol.12 (6), p.362-367
issn 1749-4885
1749-4893
language eng
recordid cdi_osti_scitechconnect_1539838
source Nature; Alma/SFX Local Collection
subjects 639/624/399/73
639/766/119
639/766/483
Applied and Technical Physics
Carbon nanotubes
Chirality
Coalescing
Coupling
Excitons
Nanotubes
Optics
Photons
Physics
Physics and Astronomy
Polaritons
Polarization
Quantum Physics
Vacuum
title Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T07%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20transition%20between%20weak%20and%20ultrastrong%20coupling%20through%20exceptional%20points%20in%20carbon%20nanotube%20microcavity%20exciton%E2%80%93polaritons&rft.jtitle=Nature%20photonics&rft.au=Gao,%20Weilu&rft.aucorp=Rice%20Univ.,%20Houston,%20TX%20(United%20States)&rft.date=2018-06-01&rft.volume=12&rft.issue=6&rft.spage=362&rft.epage=367&rft.pages=362-367&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-018-0157-9&rft_dat=%3Cproquest_osti_%3E2046589575%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046589575&rft_id=info:pmid/&rfr_iscdi=true