Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons
Non-perturbative coupling of photons and excitons produces hybrid particles, exciton–polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon–exciton coupling, is usually a single...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2018-06, Vol.12 (6), p.362-367 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 367 |
---|---|
container_issue | 6 |
container_start_page | 362 |
container_title | Nature photonics |
container_volume | 12 |
creator | Gao, Weilu Li, Xinwei Bamba, Motoaki Kono, Junichiro |
description | Non-perturbative coupling of photons and excitons produces hybrid particles, exciton–polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon–exciton coupling, is usually a single constant for a given system. Here, we have developed a unique architecture in which excitons in an aligned single-chirality carbon nanotube film interact with cavity photons in polarization-dependent manners. The system reveals ultrastrong coupling (VRS up to 329 meV or a coupling-strength-to-transition-energy ratio of 13.3%) for polarization parallel to the nanotube axis, whereas VRS is absent for perpendicular polarization. Between these two extremes, VRS is continuously tunable through polarization rotation with exceptional points separating crossing and anticrossing. The points between exceptional points form equienergy arcs onto which the upper and lower polaritons coalesce. The demonstrated on-demand ultrastrong coupling provides ways to explore topological properties of polaritons and quantum technology applications.
A microcavity exciton–polariton system based on aligned and packed single-walled carbon nanotubes exhibits ultrastrong coupling. The coupling strength is polarization sensitive. The record high value of vacuum Rabi splitting, 329 meV, is reported. |
doi_str_mv | 10.1038/s41566-018-0157-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2046589575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-2e6a9b4aadbd94a0ebfa613dea4fa72e559a7cd7e56a60083dc1d9846e9c6ff63</originalsourceid><addsrcrecordid>eNp1kbFu1jAUhSNEpZbSB-hm0TlgJ7Zjj9UvaJEqsdDZunFu_t8ltYPtULp1Zu0b9klwFAQTg-Uj-TtH9_pU1Tmj7xlt1YfEmZCypkyVI7pav6pOWMd1zZVuX__VShxXb1K6o1S0umlOql-74LPzS1gSyRF8ctkFT3rMD4iePCB8I-AHskzlNeUY_J7YsMyTKyIfYlj2B4I_Lc6rDyYyB-dzIs4TC7EvUR58yEuP5N7ZGCz8cPlxdbgc_MvT8xwmiKtOb6ujEaaEZ3_u0-r208evu-v65svV593lTW25aHLdoATdc4ChHzQHiv0IkrUDAh-ha1AIDZ0dOhQSJKWqHSwbtOIStZXjKNvT6t2WG1J2JpVB0B5s8B5tNqz8i2pVgS42aI7h-4Ipm7uwxLJgMg3lUigtOlEotlFls5QijmaO7h7io2HUrL2YrRdTejFrL0YXT7N5UmH9HuO_5P-bfgOWyZbg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2046589575</pqid></control><display><type>article</type><title>Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Gao, Weilu ; Li, Xinwei ; Bamba, Motoaki ; Kono, Junichiro</creator><creatorcontrib>Gao, Weilu ; Li, Xinwei ; Bamba, Motoaki ; Kono, Junichiro ; Rice Univ., Houston, TX (United States)</creatorcontrib><description>Non-perturbative coupling of photons and excitons produces hybrid particles, exciton–polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon–exciton coupling, is usually a single constant for a given system. Here, we have developed a unique architecture in which excitons in an aligned single-chirality carbon nanotube film interact with cavity photons in polarization-dependent manners. The system reveals ultrastrong coupling (VRS up to 329 meV or a coupling-strength-to-transition-energy ratio of 13.3%) for polarization parallel to the nanotube axis, whereas VRS is absent for perpendicular polarization. Between these two extremes, VRS is continuously tunable through polarization rotation with exceptional points separating crossing and anticrossing. The points between exceptional points form equienergy arcs onto which the upper and lower polaritons coalesce. The demonstrated on-demand ultrastrong coupling provides ways to explore topological properties of polaritons and quantum technology applications.
A microcavity exciton–polariton system based on aligned and packed single-walled carbon nanotubes exhibits ultrastrong coupling. The coupling strength is polarization sensitive. The record high value of vacuum Rabi splitting, 329 meV, is reported.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-018-0157-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/73 ; 639/766/119 ; 639/766/483 ; Applied and Technical Physics ; Carbon nanotubes ; Chirality ; Coalescing ; Coupling ; Excitons ; Nanotubes ; Optics ; Photons ; Physics ; Physics and Astronomy ; Polaritons ; Polarization ; Quantum Physics ; Vacuum</subject><ispartof>Nature photonics, 2018-06, Vol.12 (6), p.362-367</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Nature Publishing Group Jun 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-2e6a9b4aadbd94a0ebfa613dea4fa72e559a7cd7e56a60083dc1d9846e9c6ff63</citedby><cites>FETCH-LOGICAL-c452t-2e6a9b4aadbd94a0ebfa613dea4fa72e559a7cd7e56a60083dc1d9846e9c6ff63</cites><orcidid>0000-0002-4195-0577 ; 0000-0003-3139-034X ; 0000-0001-9811-0416 ; 0000000241950577 ; 000000033139034X ; 0000000198110416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1539838$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Weilu</creatorcontrib><creatorcontrib>Li, Xinwei</creatorcontrib><creatorcontrib>Bamba, Motoaki</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><title>Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Non-perturbative coupling of photons and excitons produces hybrid particles, exciton–polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon–exciton coupling, is usually a single constant for a given system. Here, we have developed a unique architecture in which excitons in an aligned single-chirality carbon nanotube film interact with cavity photons in polarization-dependent manners. The system reveals ultrastrong coupling (VRS up to 329 meV or a coupling-strength-to-transition-energy ratio of 13.3%) for polarization parallel to the nanotube axis, whereas VRS is absent for perpendicular polarization. Between these two extremes, VRS is continuously tunable through polarization rotation with exceptional points separating crossing and anticrossing. The points between exceptional points form equienergy arcs onto which the upper and lower polaritons coalesce. The demonstrated on-demand ultrastrong coupling provides ways to explore topological properties of polaritons and quantum technology applications.
A microcavity exciton–polariton system based on aligned and packed single-walled carbon nanotubes exhibits ultrastrong coupling. The coupling strength is polarization sensitive. The record high value of vacuum Rabi splitting, 329 meV, is reported.</description><subject>639/624/399/73</subject><subject>639/766/119</subject><subject>639/766/483</subject><subject>Applied and Technical Physics</subject><subject>Carbon nanotubes</subject><subject>Chirality</subject><subject>Coalescing</subject><subject>Coupling</subject><subject>Excitons</subject><subject>Nanotubes</subject><subject>Optics</subject><subject>Photons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polaritons</subject><subject>Polarization</subject><subject>Quantum Physics</subject><subject>Vacuum</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kbFu1jAUhSNEpZbSB-hm0TlgJ7Zjj9UvaJEqsdDZunFu_t8ltYPtULp1Zu0b9klwFAQTg-Uj-TtH9_pU1Tmj7xlt1YfEmZCypkyVI7pav6pOWMd1zZVuX__VShxXb1K6o1S0umlOql-74LPzS1gSyRF8ctkFT3rMD4iePCB8I-AHskzlNeUY_J7YsMyTKyIfYlj2B4I_Lc6rDyYyB-dzIs4TC7EvUR58yEuP5N7ZGCz8cPlxdbgc_MvT8xwmiKtOb6ujEaaEZ3_u0-r208evu-v65svV593lTW25aHLdoATdc4ChHzQHiv0IkrUDAh-ha1AIDZ0dOhQSJKWqHSwbtOIStZXjKNvT6t2WG1J2JpVB0B5s8B5tNqz8i2pVgS42aI7h-4Ipm7uwxLJgMg3lUigtOlEotlFls5QijmaO7h7io2HUrL2YrRdTejFrL0YXT7N5UmH9HuO_5P-bfgOWyZbg</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Gao, Weilu</creator><creator>Li, Xinwei</creator><creator>Bamba, Motoaki</creator><creator>Kono, Junichiro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4195-0577</orcidid><orcidid>https://orcid.org/0000-0003-3139-034X</orcidid><orcidid>https://orcid.org/0000-0001-9811-0416</orcidid><orcidid>https://orcid.org/0000000241950577</orcidid><orcidid>https://orcid.org/000000033139034X</orcidid><orcidid>https://orcid.org/0000000198110416</orcidid></search><sort><creationdate>20180601</creationdate><title>Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons</title><author>Gao, Weilu ; Li, Xinwei ; Bamba, Motoaki ; Kono, Junichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-2e6a9b4aadbd94a0ebfa613dea4fa72e559a7cd7e56a60083dc1d9846e9c6ff63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624/399/73</topic><topic>639/766/119</topic><topic>639/766/483</topic><topic>Applied and Technical Physics</topic><topic>Carbon nanotubes</topic><topic>Chirality</topic><topic>Coalescing</topic><topic>Coupling</topic><topic>Excitons</topic><topic>Nanotubes</topic><topic>Optics</topic><topic>Photons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polaritons</topic><topic>Polarization</topic><topic>Quantum Physics</topic><topic>Vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Weilu</creatorcontrib><creatorcontrib>Li, Xinwei</creatorcontrib><creatorcontrib>Bamba, Motoaki</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><creatorcontrib>Rice Univ., Houston, TX (United States)</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Weilu</au><au>Li, Xinwei</au><au>Bamba, Motoaki</au><au>Kono, Junichiro</au><aucorp>Rice Univ., Houston, TX (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>12</volume><issue>6</issue><spage>362</spage><epage>367</epage><pages>362-367</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Non-perturbative coupling of photons and excitons produces hybrid particles, exciton–polaritons, which have exhibited a variety of many-body phenomena in various microcavity systems. However, the vacuum Rabi splitting (VRS), which defines the strength of photon–exciton coupling, is usually a single constant for a given system. Here, we have developed a unique architecture in which excitons in an aligned single-chirality carbon nanotube film interact with cavity photons in polarization-dependent manners. The system reveals ultrastrong coupling (VRS up to 329 meV or a coupling-strength-to-transition-energy ratio of 13.3%) for polarization parallel to the nanotube axis, whereas VRS is absent for perpendicular polarization. Between these two extremes, VRS is continuously tunable through polarization rotation with exceptional points separating crossing and anticrossing. The points between exceptional points form equienergy arcs onto which the upper and lower polaritons coalesce. The demonstrated on-demand ultrastrong coupling provides ways to explore topological properties of polaritons and quantum technology applications.
A microcavity exciton–polariton system based on aligned and packed single-walled carbon nanotubes exhibits ultrastrong coupling. The coupling strength is polarization sensitive. The record high value of vacuum Rabi splitting, 329 meV, is reported.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-018-0157-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4195-0577</orcidid><orcidid>https://orcid.org/0000-0003-3139-034X</orcidid><orcidid>https://orcid.org/0000-0001-9811-0416</orcidid><orcidid>https://orcid.org/0000000241950577</orcidid><orcidid>https://orcid.org/000000033139034X</orcidid><orcidid>https://orcid.org/0000000198110416</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2018-06, Vol.12 (6), p.362-367 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_osti_scitechconnect_1539838 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/624/399/73 639/766/119 639/766/483 Applied and Technical Physics Carbon nanotubes Chirality Coalescing Coupling Excitons Nanotubes Optics Photons Physics Physics and Astronomy Polaritons Polarization Quantum Physics Vacuum |
title | Continuous transition between weak and ultrastrong coupling through exceptional points in carbon nanotube microcavity exciton–polaritons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T07%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20transition%20between%20weak%20and%20ultrastrong%20coupling%20through%20exceptional%20points%20in%20carbon%20nanotube%20microcavity%20exciton%E2%80%93polaritons&rft.jtitle=Nature%20photonics&rft.au=Gao,%20Weilu&rft.aucorp=Rice%20Univ.,%20Houston,%20TX%20(United%20States)&rft.date=2018-06-01&rft.volume=12&rft.issue=6&rft.spage=362&rft.epage=367&rft.pages=362-367&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-018-0157-9&rft_dat=%3Cproquest_osti_%3E2046589575%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2046589575&rft_id=info:pmid/&rfr_iscdi=true |