Ultrahard carbon film from epitaxial two-layer graphene
Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show th...
Gespeichert in:
Veröffentlicht in: | Nature nanotechnology 2018-02, Vol.13 (2), p.133-138 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 2 |
container_start_page | 133 |
container_title | Nature nanotechnology |
container_volume | 13 |
creator | Gao, Yang Cao, Tengfei Cellini, Filippo Berger, Claire de Heer, Walter A. Tosatti, Erio Riedo, Elisa Bongiorno, Angelo |
description | Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and
sp
2
to
sp
3
chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.
Indentation in bilayer epitaxial graphene induces its reversible transformation into a diamond-like structure with stiffness and hardness comparable to diamond. |
doi_str_mv | 10.1038/s41565-017-0023-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978724095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-3e3894f1841b0c672069d07da852a102750ffaa57e6b837cc9732dd5b2baf7973</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhq2qiF0WfkAvVVQucEg7tuPYPiLEl7QSFzhbE8dhs0rirZ1t4d_jVWCFkDjN2H7mta2HkB8UflPg6k8sqChFDlTmAIzn-huZU1monHMtvu97JWfkKMY1gGCaFYdklopIPcyJfOzGgCsMdWYxVH7Imrbrsyb4PnObdsTnFrts_O_zDl9cyJ4CblZucMfkoMEuupO3uiCP11cPl7f58v7m7vJimdtC6zHnjitdNFQVtAJbSgalrkHWqARDCkwKaBpEIV1ZKS6t1ZKzuhYVq7CRabEgv6ZcH8fWRNuOzq6sHwZnR0MF14rzBJ1P0Ao7swltj-HFeGzN7cXS7PaAAdVU8n80sWcTuwn-79bF0fRttK7rcHB-Gw3VUklWgBYJPf2Erv02DOm7idIF16WQkCg6UTb4GINr9i-gYHaazKTJJE1mp8noNPPzLXlb9a7eT7x7SQCbgJiOhicXPlz9ZeorUgKZjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994396570</pqid></control><display><type>article</type><title>Ultrahard carbon film from epitaxial two-layer graphene</title><source>Springer Nature - Complete Springer Journals</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Gao, Yang ; Cao, Tengfei ; Cellini, Filippo ; Berger, Claire ; de Heer, Walter A. ; Tosatti, Erio ; Riedo, Elisa ; Bongiorno, Angelo</creator><creatorcontrib>Gao, Yang ; Cao, Tengfei ; Cellini, Filippo ; Berger, Claire ; de Heer, Walter A. ; Tosatti, Erio ; Riedo, Elisa ; Bongiorno, Angelo ; City Univ. of New York (CUNY), NY (United States)</creatorcontrib><description>Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and
sp
2
to
sp
3
chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.
Indentation in bilayer epitaxial graphene induces its reversible transformation into a diamond-like structure with stiffness and hardness comparable to diamond.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-017-0023-9</identifier><identifier>PMID: 29255290</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2795 ; 639/925/918/1053 ; Buffer layers ; Carbon ; Chemistry and Materials Science ; Compression ; Conformation ; Density functional theory ; Diamond films ; Diamonds ; Elastic deformation ; Electrical conductivity ; Electrical resistivity ; Experiments ; Graphene ; Graphite ; Hardness ; Indentation ; Materials Science ; Mathematical analysis ; Mechanical properties ; Microscopy ; Nanotechnology ; Nanotechnology and Microengineering ; Perforation ; Phase transitions ; Physics ; Science & Technology - Other Topics ; Silicon carbide ; Stiffness</subject><ispartof>Nature nanotechnology, 2018-02, Vol.13 (2), p.133-138</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-3e3894f1841b0c672069d07da852a102750ffaa57e6b837cc9732dd5b2baf7973</citedby><cites>FETCH-LOGICAL-c499t-3e3894f1841b0c672069d07da852a102750ffaa57e6b837cc9732dd5b2baf7973</cites><orcidid>0000-0001-9875-5150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-017-0023-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-017-0023-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29255290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02019173$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1539833$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Cao, Tengfei</creatorcontrib><creatorcontrib>Cellini, Filippo</creatorcontrib><creatorcontrib>Berger, Claire</creatorcontrib><creatorcontrib>de Heer, Walter A.</creatorcontrib><creatorcontrib>Tosatti, Erio</creatorcontrib><creatorcontrib>Riedo, Elisa</creatorcontrib><creatorcontrib>Bongiorno, Angelo</creatorcontrib><creatorcontrib>City Univ. of New York (CUNY), NY (United States)</creatorcontrib><title>Ultrahard carbon film from epitaxial two-layer graphene</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and
sp
2
to
sp
3
chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.
Indentation in bilayer epitaxial graphene induces its reversible transformation into a diamond-like structure with stiffness and hardness comparable to diamond.</description><subject>639/301/119/2795</subject><subject>639/925/918/1053</subject><subject>Buffer layers</subject><subject>Carbon</subject><subject>Chemistry and Materials Science</subject><subject>Compression</subject><subject>Conformation</subject><subject>Density functional theory</subject><subject>Diamond films</subject><subject>Diamonds</subject><subject>Elastic deformation</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Experiments</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hardness</subject><subject>Indentation</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Perforation</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Science & Technology - Other Topics</subject><subject>Silicon carbide</subject><subject>Stiffness</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1P3DAQhq2qiF0WfkAvVVQucEg7tuPYPiLEl7QSFzhbE8dhs0rirZ1t4d_jVWCFkDjN2H7mta2HkB8UflPg6k8sqChFDlTmAIzn-huZU1monHMtvu97JWfkKMY1gGCaFYdklopIPcyJfOzGgCsMdWYxVH7Imrbrsyb4PnObdsTnFrts_O_zDl9cyJ4CblZucMfkoMEuupO3uiCP11cPl7f58v7m7vJimdtC6zHnjitdNFQVtAJbSgalrkHWqARDCkwKaBpEIV1ZKS6t1ZKzuhYVq7CRabEgv6ZcH8fWRNuOzq6sHwZnR0MF14rzBJ1P0Ao7swltj-HFeGzN7cXS7PaAAdVU8n80sWcTuwn-79bF0fRttK7rcHB-Gw3VUklWgBYJPf2Erv02DOm7idIF16WQkCg6UTb4GINr9i-gYHaazKTJJE1mp8noNPPzLXlb9a7eT7x7SQCbgJiOhicXPlz9ZeorUgKZjg</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Gao, Yang</creator><creator>Cao, Tengfei</creator><creator>Cellini, Filippo</creator><creator>Berger, Claire</creator><creator>de Heer, Walter A.</creator><creator>Tosatti, Erio</creator><creator>Riedo, Elisa</creator><creator>Bongiorno, Angelo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9875-5150</orcidid></search><sort><creationdate>20180201</creationdate><title>Ultrahard carbon film from epitaxial two-layer graphene</title><author>Gao, Yang ; Cao, Tengfei ; Cellini, Filippo ; Berger, Claire ; de Heer, Walter A. ; Tosatti, Erio ; Riedo, Elisa ; Bongiorno, Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-3e3894f1841b0c672069d07da852a102750ffaa57e6b837cc9732dd5b2baf7973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/119/2795</topic><topic>639/925/918/1053</topic><topic>Buffer layers</topic><topic>Carbon</topic><topic>Chemistry and Materials Science</topic><topic>Compression</topic><topic>Conformation</topic><topic>Density functional theory</topic><topic>Diamond films</topic><topic>Diamonds</topic><topic>Elastic deformation</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Experiments</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hardness</topic><topic>Indentation</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Perforation</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Science & Technology - Other Topics</topic><topic>Silicon carbide</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Cao, Tengfei</creatorcontrib><creatorcontrib>Cellini, Filippo</creatorcontrib><creatorcontrib>Berger, Claire</creatorcontrib><creatorcontrib>de Heer, Walter A.</creatorcontrib><creatorcontrib>Tosatti, Erio</creatorcontrib><creatorcontrib>Riedo, Elisa</creatorcontrib><creatorcontrib>Bongiorno, Angelo</creatorcontrib><creatorcontrib>City Univ. of New York (CUNY), NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yang</au><au>Cao, Tengfei</au><au>Cellini, Filippo</au><au>Berger, Claire</au><au>de Heer, Walter A.</au><au>Tosatti, Erio</au><au>Riedo, Elisa</au><au>Bongiorno, Angelo</au><aucorp>City Univ. of New York (CUNY), NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahard carbon film from epitaxial two-layer graphene</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>133</spage><epage>138</epage><pages>133-138</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and
sp
2
to
sp
3
chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.
Indentation in bilayer epitaxial graphene induces its reversible transformation into a diamond-like structure with stiffness and hardness comparable to diamond.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29255290</pmid><doi>10.1038/s41565-017-0023-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9875-5150</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-3387 |
ispartof | Nature nanotechnology, 2018-02, Vol.13 (2), p.133-138 |
issn | 1748-3387 1748-3395 |
language | eng |
recordid | cdi_osti_scitechconnect_1539833 |
source | Springer Nature - Complete Springer Journals; Springer Nature - Connect here FIRST to enable access |
subjects | 639/301/119/2795 639/925/918/1053 Buffer layers Carbon Chemistry and Materials Science Compression Conformation Density functional theory Diamond films Diamonds Elastic deformation Electrical conductivity Electrical resistivity Experiments Graphene Graphite Hardness Indentation Materials Science Mathematical analysis Mechanical properties Microscopy Nanotechnology Nanotechnology and Microengineering Perforation Phase transitions Physics Science & Technology - Other Topics Silicon carbide Stiffness |
title | Ultrahard carbon film from epitaxial two-layer graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahard%20carbon%20film%20from%20epitaxial%20two-layer%20graphene&rft.jtitle=Nature%20nanotechnology&rft.au=Gao,%20Yang&rft.aucorp=City%20Univ.%20of%20New%20York%20(CUNY),%20NY%20(United%20States)&rft.date=2018-02-01&rft.volume=13&rft.issue=2&rft.spage=133&rft.epage=138&rft.pages=133-138&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-017-0023-9&rft_dat=%3Cproquest_osti_%3E1978724095%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1994396570&rft_id=info:pmid/29255290&rfr_iscdi=true |