Ultrahard carbon film from epitaxial two-layer graphene

Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2018-02, Vol.13 (2), p.133-138
Hauptverfasser: Gao, Yang, Cao, Tengfei, Cellini, Filippo, Berger, Claire, de Heer, Walter A., Tosatti, Erio, Riedo, Elisa, Bongiorno, Angelo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 138
container_issue 2
container_start_page 133
container_title Nature nanotechnology
container_volume 13
creator Gao, Yang
Cao, Tengfei
Cellini, Filippo
Berger, Claire
de Heer, Walter A.
Tosatti, Erio
Riedo, Elisa
Bongiorno, Angelo
description Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp 2 to sp 3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation. Indentation in bilayer epitaxial graphene induces its reversible transformation into a diamond-like structure with stiffness and hardness comparable to diamond.
doi_str_mv 10.1038/s41565-017-0023-9
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1978724095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-3e3894f1841b0c672069d07da852a102750ffaa57e6b837cc9732dd5b2baf7973</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhq2qiF0WfkAvVVQucEg7tuPYPiLEl7QSFzhbE8dhs0rirZ1t4d_jVWCFkDjN2H7mta2HkB8UflPg6k8sqChFDlTmAIzn-huZU1monHMtvu97JWfkKMY1gGCaFYdklopIPcyJfOzGgCsMdWYxVH7Imrbrsyb4PnObdsTnFrts_O_zDl9cyJ4CblZucMfkoMEuupO3uiCP11cPl7f58v7m7vJimdtC6zHnjitdNFQVtAJbSgalrkHWqARDCkwKaBpEIV1ZKS6t1ZKzuhYVq7CRabEgv6ZcH8fWRNuOzq6sHwZnR0MF14rzBJ1P0Ao7swltj-HFeGzN7cXS7PaAAdVU8n80sWcTuwn-79bF0fRttK7rcHB-Gw3VUklWgBYJPf2Erv02DOm7idIF16WQkCg6UTb4GINr9i-gYHaazKTJJE1mp8noNPPzLXlb9a7eT7x7SQCbgJiOhicXPlz9ZeorUgKZjg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1994396570</pqid></control><display><type>article</type><title>Ultrahard carbon film from epitaxial two-layer graphene</title><source>Springer Nature - Complete Springer Journals</source><source>Springer Nature - Connect here FIRST to enable access</source><creator>Gao, Yang ; Cao, Tengfei ; Cellini, Filippo ; Berger, Claire ; de Heer, Walter A. ; Tosatti, Erio ; Riedo, Elisa ; Bongiorno, Angelo</creator><creatorcontrib>Gao, Yang ; Cao, Tengfei ; Cellini, Filippo ; Berger, Claire ; de Heer, Walter A. ; Tosatti, Erio ; Riedo, Elisa ; Bongiorno, Angelo ; City Univ. of New York (CUNY), NY (United States)</creatorcontrib><description>Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp 2 to sp 3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation. Indentation in bilayer epitaxial graphene induces its reversible transformation into a diamond-like structure with stiffness and hardness comparable to diamond.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/s41565-017-0023-9</identifier><identifier>PMID: 29255290</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2795 ; 639/925/918/1053 ; Buffer layers ; Carbon ; Chemistry and Materials Science ; Compression ; Conformation ; Density functional theory ; Diamond films ; Diamonds ; Elastic deformation ; Electrical conductivity ; Electrical resistivity ; Experiments ; Graphene ; Graphite ; Hardness ; Indentation ; Materials Science ; Mathematical analysis ; Mechanical properties ; Microscopy ; Nanotechnology ; Nanotechnology and Microengineering ; Perforation ; Phase transitions ; Physics ; Science &amp; Technology - Other Topics ; Silicon carbide ; Stiffness</subject><ispartof>Nature nanotechnology, 2018-02, Vol.13 (2), p.133-138</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Feb 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-3e3894f1841b0c672069d07da852a102750ffaa57e6b837cc9732dd5b2baf7973</citedby><cites>FETCH-LOGICAL-c499t-3e3894f1841b0c672069d07da852a102750ffaa57e6b837cc9732dd5b2baf7973</cites><orcidid>0000-0001-9875-5150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41565-017-0023-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41565-017-0023-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29255290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02019173$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1539833$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Cao, Tengfei</creatorcontrib><creatorcontrib>Cellini, Filippo</creatorcontrib><creatorcontrib>Berger, Claire</creatorcontrib><creatorcontrib>de Heer, Walter A.</creatorcontrib><creatorcontrib>Tosatti, Erio</creatorcontrib><creatorcontrib>Riedo, Elisa</creatorcontrib><creatorcontrib>Bongiorno, Angelo</creatorcontrib><creatorcontrib>City Univ. of New York (CUNY), NY (United States)</creatorcontrib><title>Ultrahard carbon film from epitaxial two-layer graphene</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp 2 to sp 3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation. Indentation in bilayer epitaxial graphene induces its reversible transformation into a diamond-like structure with stiffness and hardness comparable to diamond.</description><subject>639/301/119/2795</subject><subject>639/925/918/1053</subject><subject>Buffer layers</subject><subject>Carbon</subject><subject>Chemistry and Materials Science</subject><subject>Compression</subject><subject>Conformation</subject><subject>Density functional theory</subject><subject>Diamond films</subject><subject>Diamonds</subject><subject>Elastic deformation</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Experiments</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hardness</subject><subject>Indentation</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Microscopy</subject><subject>Nanotechnology</subject><subject>Nanotechnology and Microengineering</subject><subject>Perforation</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Silicon carbide</subject><subject>Stiffness</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1P3DAQhq2qiF0WfkAvVVQucEg7tuPYPiLEl7QSFzhbE8dhs0rirZ1t4d_jVWCFkDjN2H7mta2HkB8UflPg6k8sqChFDlTmAIzn-huZU1monHMtvu97JWfkKMY1gGCaFYdklopIPcyJfOzGgCsMdWYxVH7Imrbrsyb4PnObdsTnFrts_O_zDl9cyJ4CblZucMfkoMEuupO3uiCP11cPl7f58v7m7vJimdtC6zHnjitdNFQVtAJbSgalrkHWqARDCkwKaBpEIV1ZKS6t1ZKzuhYVq7CRabEgv6ZcH8fWRNuOzq6sHwZnR0MF14rzBJ1P0Ao7swltj-HFeGzN7cXS7PaAAdVU8n80sWcTuwn-79bF0fRttK7rcHB-Gw3VUklWgBYJPf2Erv02DOm7idIF16WQkCg6UTb4GINr9i-gYHaazKTJJE1mp8noNPPzLXlb9a7eT7x7SQCbgJiOhicXPlz9ZeorUgKZjg</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Gao, Yang</creator><creator>Cao, Tengfei</creator><creator>Cellini, Filippo</creator><creator>Berger, Claire</creator><creator>de Heer, Walter A.</creator><creator>Tosatti, Erio</creator><creator>Riedo, Elisa</creator><creator>Bongiorno, Angelo</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9875-5150</orcidid></search><sort><creationdate>20180201</creationdate><title>Ultrahard carbon film from epitaxial two-layer graphene</title><author>Gao, Yang ; Cao, Tengfei ; Cellini, Filippo ; Berger, Claire ; de Heer, Walter A. ; Tosatti, Erio ; Riedo, Elisa ; Bongiorno, Angelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-3e3894f1841b0c672069d07da852a102750ffaa57e6b837cc9732dd5b2baf7973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/301/119/2795</topic><topic>639/925/918/1053</topic><topic>Buffer layers</topic><topic>Carbon</topic><topic>Chemistry and Materials Science</topic><topic>Compression</topic><topic>Conformation</topic><topic>Density functional theory</topic><topic>Diamond films</topic><topic>Diamonds</topic><topic>Elastic deformation</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Experiments</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hardness</topic><topic>Indentation</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Microscopy</topic><topic>Nanotechnology</topic><topic>Nanotechnology and Microengineering</topic><topic>Perforation</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Silicon carbide</topic><topic>Stiffness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Cao, Tengfei</creatorcontrib><creatorcontrib>Cellini, Filippo</creatorcontrib><creatorcontrib>Berger, Claire</creatorcontrib><creatorcontrib>de Heer, Walter A.</creatorcontrib><creatorcontrib>Tosatti, Erio</creatorcontrib><creatorcontrib>Riedo, Elisa</creatorcontrib><creatorcontrib>Bongiorno, Angelo</creatorcontrib><creatorcontrib>City Univ. of New York (CUNY), NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yang</au><au>Cao, Tengfei</au><au>Cellini, Filippo</au><au>Berger, Claire</au><au>de Heer, Walter A.</au><au>Tosatti, Erio</au><au>Riedo, Elisa</au><au>Bongiorno, Angelo</au><aucorp>City Univ. of New York (CUNY), NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahard carbon film from epitaxial two-layer graphene</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>133</spage><epage>138</epage><pages>133-138</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. So far, there has been no practical demonstration of the transformation of multilayer graphene into diamond-like ultrahard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, is resistant to perforation with a diamond indenter and shows a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that, upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp 2 to sp 3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than three to five layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation. Indentation in bilayer epitaxial graphene induces its reversible transformation into a diamond-like structure with stiffness and hardness comparable to diamond.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29255290</pmid><doi>10.1038/s41565-017-0023-9</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9875-5150</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2018-02, Vol.13 (2), p.133-138
issn 1748-3387
1748-3395
language eng
recordid cdi_osti_scitechconnect_1539833
source Springer Nature - Complete Springer Journals; Springer Nature - Connect here FIRST to enable access
subjects 639/301/119/2795
639/925/918/1053
Buffer layers
Carbon
Chemistry and Materials Science
Compression
Conformation
Density functional theory
Diamond films
Diamonds
Elastic deformation
Electrical conductivity
Electrical resistivity
Experiments
Graphene
Graphite
Hardness
Indentation
Materials Science
Mathematical analysis
Mechanical properties
Microscopy
Nanotechnology
Nanotechnology and Microengineering
Perforation
Phase transitions
Physics
Science & Technology - Other Topics
Silicon carbide
Stiffness
title Ultrahard carbon film from epitaxial two-layer graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A58%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahard%20carbon%20film%20from%20epitaxial%20two-layer%20graphene&rft.jtitle=Nature%20nanotechnology&rft.au=Gao,%20Yang&rft.aucorp=City%20Univ.%20of%20New%20York%20(CUNY),%20NY%20(United%20States)&rft.date=2018-02-01&rft.volume=13&rft.issue=2&rft.spage=133&rft.epage=138&rft.pages=133-138&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/s41565-017-0023-9&rft_dat=%3Cproquest_osti_%3E1978724095%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1994396570&rft_id=info:pmid/29255290&rfr_iscdi=true