Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms

Phytotransferrin, a functional analogue of transferrin, has an obligate requirement for carbonate to bind iron, which suggests that acidification-driven declines in the concentration of seawater carbonate ions may negatively affect diatom iron acquisition. Iron binding in phytoplankton Iron is an es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2018-03, Vol.555 (7697), p.534-537
Hauptverfasser: McQuaid, Jeffrey B., Kustka, Adam B., Oborník, Miroslav, Horák, Aleš, McCrow, John P., Karas, Bogumil J., Zheng, Hong, Kindeberg, Theodor, Andersson, Andreas J., Barbeau, Katherine A., Allen, Andrew E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 537
container_issue 7697
container_start_page 534
container_title Nature (London)
container_volume 555
creator McQuaid, Jeffrey B.
Kustka, Adam B.
Oborník, Miroslav
Horák, Aleš
McCrow, John P.
Karas, Bogumil J.
Zheng, Hong
Kindeberg, Theodor
Andersson, Andreas J.
Barbeau, Katherine A.
Allen, Andrew E.
description Phytotransferrin, a functional analogue of transferrin, has an obligate requirement for carbonate to bind iron, which suggests that acidification-driven declines in the concentration of seawater carbonate ions may negatively affect diatom iron acquisition. Iron binding in phytoplankton Iron is an essential nutrient for photosynthetic plankton (phytoplankton), but owing to its low solubility in vast areas of the ocean the concentration of this metal is low, limiting the growth of the phytoplankton. Andrew Allen and co-workers show that the phytoplankton Phaeodactylum tricornutum has developed a specific iron acquisition mechanism that relies on activity of the ISIP2A protein. ISIP2A represents a functional analogue of transferrin—a metazoan protein that binds iron with high affinity—as both proteins use similar iron binding, internalization and release mechanisms, suggesting their independent and convergent evolution. Both proteins bind iron through a synergistic interaction of ferric iron and CO 3 2− , and because ocean acidification decreases CO 3 2− concentration it may also decrease phytoplankton iron uptake and growth. In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton 1 , 2 . Although most dissolved iron in the marine environment is complexed with organic molecules 3 , picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone 4 and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms 5 . Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts 6 , 7 , including the ferric iron-concentrating protein ISIP2A 8 , but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum , and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum , the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron upt
doi_str_mv 10.1038/nature25982
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A531879220</galeid><sourcerecordid>A531879220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-6730acc6e0c24d3bd0cb4a3b940a4b7e0456bebfc1e73c63c4906fec29d279993</originalsourceid><addsrcrecordid>eNpt0s9v0zAUB_AIgVgZnLijaFyYIMO_EsfHqgI2qRLSgLPlOC-tR2JntjPR_x5HHduKKh8s2R9_ZT-_LHuL0QVGtP5sVZw8kFLU5Fm2wIxXBatq_jxbIETqAtW0OslehXCDECoxZy-zEyJKKiqGFtn1SvnGpQgoAthgormDfNzuoote2dCB98bm2tnoXR_yrdlsC9V1xpq4y413Np_GqH5DnlRrVHRDeJ296FQf4M39fJr9-vrl5-qyWH__drVargtd1jgWFadIaV0B0oS1tGmRbpiijWBIsYYDYmXVQNNpDJzqimomUNWBJqIlXAhBT7Ozfa4L0cigTQS9TTe1oKPE6YGclwmd79FW9XL0ZlB-J50y8nK5lvMaYnUlKBV3ONkPezt6dztBiHIwQUPfKwtuCpIgzDArBZvp-__ojZu8Tc-dFReU8Jo_qo3qQRrbzUXVc6hclhTXXBCCkiqOqA1Y8Kp3FjqTlg_82RGvR3Mrn6KLIyiNFgajj6aeHxyYvxz-xI2aQpBXP64P7ce91d6F4KF7qCxGcu5J-aQnk353X6upGaB9sP-aMIFPexDSlt2Afyzmsby_SKjn8Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017932787</pqid></control><display><type>article</type><title>Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms</title><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>McQuaid, Jeffrey B. ; Kustka, Adam B. ; Oborník, Miroslav ; Horák, Aleš ; McCrow, John P. ; Karas, Bogumil J. ; Zheng, Hong ; Kindeberg, Theodor ; Andersson, Andreas J. ; Barbeau, Katherine A. ; Allen, Andrew E.</creator><creatorcontrib>McQuaid, Jeffrey B. ; Kustka, Adam B. ; Oborník, Miroslav ; Horák, Aleš ; McCrow, John P. ; Karas, Bogumil J. ; Zheng, Hong ; Kindeberg, Theodor ; Andersson, Andreas J. ; Barbeau, Katherine A. ; Allen, Andrew E. ; J. Craig Venter Inst., Inc., Rockville, MD (United States)</creatorcontrib><description>Phytotransferrin, a functional analogue of transferrin, has an obligate requirement for carbonate to bind iron, which suggests that acidification-driven declines in the concentration of seawater carbonate ions may negatively affect diatom iron acquisition. Iron binding in phytoplankton Iron is an essential nutrient for photosynthetic plankton (phytoplankton), but owing to its low solubility in vast areas of the ocean the concentration of this metal is low, limiting the growth of the phytoplankton. Andrew Allen and co-workers show that the phytoplankton Phaeodactylum tricornutum has developed a specific iron acquisition mechanism that relies on activity of the ISIP2A protein. ISIP2A represents a functional analogue of transferrin—a metazoan protein that binds iron with high affinity—as both proteins use similar iron binding, internalization and release mechanisms, suggesting their independent and convergent evolution. Both proteins bind iron through a synergistic interaction of ferric iron and CO 3 2− , and because ocean acidification decreases CO 3 2− concentration it may also decrease phytoplankton iron uptake and growth. In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton 1 , 2 . Although most dissolved iron in the marine environment is complexed with organic molecules 3 , picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone 4 and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms 5 . Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts 6 , 7 , including the ferric iron-concentrating protein ISIP2A 8 , but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum , and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum , the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution 8 and are abundant in marine environmental genomic datasets 9 , 10 , suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature25982</identifier><identifier>PMID: 29539640</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>38/70 ; 45/77 ; 631/158/2446/2447 ; 631/158/47/4112 ; 631/181/735 ; 704/106/694 ; 704/829/826 ; 82/1 ; 96/35 ; 96/44 ; 96/63 ; Acidification ; Affinity ; Bacillariophyta ; Bioinformatics ; Carbon dioxide ; Carbonates ; Carbonic acid ; Complementation ; Diatoms ; Endocytosis ; Environmental Sciences ; Euphotic zone ; Genes ; Genomes ; Humanities and Social Sciences ; Ions ; Iron ; Iron (Nutrient) ; letter ; Marine environment ; multidisciplinary ; Mutagenesis ; Organic chemistry ; Phaeodactylum tricornutum ; Phylogenetics ; Physiological aspects ; Phytoplankton ; Proteins ; Science ; Science &amp; Technology - Other Topics ; Seawater ; Short term ; Transferrin ; Transferrins</subject><ispartof>Nature (London), 2018-03, Vol.555 (7697), p.534-537</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 22, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-6730acc6e0c24d3bd0cb4a3b940a4b7e0456bebfc1e73c63c4906fec29d279993</citedby><cites>FETCH-LOGICAL-c581t-6730acc6e0c24d3bd0cb4a3b940a4b7e0456bebfc1e73c63c4906fec29d279993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature25982$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature25982$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29539640$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04869339$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1539775$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McQuaid, Jeffrey B.</creatorcontrib><creatorcontrib>Kustka, Adam B.</creatorcontrib><creatorcontrib>Oborník, Miroslav</creatorcontrib><creatorcontrib>Horák, Aleš</creatorcontrib><creatorcontrib>McCrow, John P.</creatorcontrib><creatorcontrib>Karas, Bogumil J.</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Kindeberg, Theodor</creatorcontrib><creatorcontrib>Andersson, Andreas J.</creatorcontrib><creatorcontrib>Barbeau, Katherine A.</creatorcontrib><creatorcontrib>Allen, Andrew E.</creatorcontrib><creatorcontrib>J. Craig Venter Inst., Inc., Rockville, MD (United States)</creatorcontrib><title>Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Phytotransferrin, a functional analogue of transferrin, has an obligate requirement for carbonate to bind iron, which suggests that acidification-driven declines in the concentration of seawater carbonate ions may negatively affect diatom iron acquisition. Iron binding in phytoplankton Iron is an essential nutrient for photosynthetic plankton (phytoplankton), but owing to its low solubility in vast areas of the ocean the concentration of this metal is low, limiting the growth of the phytoplankton. Andrew Allen and co-workers show that the phytoplankton Phaeodactylum tricornutum has developed a specific iron acquisition mechanism that relies on activity of the ISIP2A protein. ISIP2A represents a functional analogue of transferrin—a metazoan protein that binds iron with high affinity—as both proteins use similar iron binding, internalization and release mechanisms, suggesting their independent and convergent evolution. Both proteins bind iron through a synergistic interaction of ferric iron and CO 3 2− , and because ocean acidification decreases CO 3 2− concentration it may also decrease phytoplankton iron uptake and growth. In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton 1 , 2 . Although most dissolved iron in the marine environment is complexed with organic molecules 3 , picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone 4 and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms 5 . Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts 6 , 7 , including the ferric iron-concentrating protein ISIP2A 8 , but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum , and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum , the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution 8 and are abundant in marine environmental genomic datasets 9 , 10 , suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.</description><subject>38/70</subject><subject>45/77</subject><subject>631/158/2446/2447</subject><subject>631/158/47/4112</subject><subject>631/181/735</subject><subject>704/106/694</subject><subject>704/829/826</subject><subject>82/1</subject><subject>96/35</subject><subject>96/44</subject><subject>96/63</subject><subject>Acidification</subject><subject>Affinity</subject><subject>Bacillariophyta</subject><subject>Bioinformatics</subject><subject>Carbon dioxide</subject><subject>Carbonates</subject><subject>Carbonic acid</subject><subject>Complementation</subject><subject>Diatoms</subject><subject>Endocytosis</subject><subject>Environmental Sciences</subject><subject>Euphotic zone</subject><subject>Genes</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Ions</subject><subject>Iron</subject><subject>Iron (Nutrient)</subject><subject>letter</subject><subject>Marine environment</subject><subject>multidisciplinary</subject><subject>Mutagenesis</subject><subject>Organic chemistry</subject><subject>Phaeodactylum tricornutum</subject><subject>Phylogenetics</subject><subject>Physiological aspects</subject><subject>Phytoplankton</subject><subject>Proteins</subject><subject>Science</subject><subject>Science &amp; Technology - Other Topics</subject><subject>Seawater</subject><subject>Short term</subject><subject>Transferrin</subject><subject>Transferrins</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0s9v0zAUB_AIgVgZnLijaFyYIMO_EsfHqgI2qRLSgLPlOC-tR2JntjPR_x5HHduKKh8s2R9_ZT-_LHuL0QVGtP5sVZw8kFLU5Fm2wIxXBatq_jxbIETqAtW0OslehXCDECoxZy-zEyJKKiqGFtn1SvnGpQgoAthgormDfNzuoote2dCB98bm2tnoXR_yrdlsC9V1xpq4y413Np_GqH5DnlRrVHRDeJ296FQf4M39fJr9-vrl5-qyWH__drVargtd1jgWFadIaV0B0oS1tGmRbpiijWBIsYYDYmXVQNNpDJzqimomUNWBJqIlXAhBT7Ozfa4L0cigTQS9TTe1oKPE6YGclwmd79FW9XL0ZlB-J50y8nK5lvMaYnUlKBV3ONkPezt6dztBiHIwQUPfKwtuCpIgzDArBZvp-__ojZu8Tc-dFReU8Jo_qo3qQRrbzUXVc6hclhTXXBCCkiqOqA1Y8Kp3FjqTlg_82RGvR3Mrn6KLIyiNFgajj6aeHxyYvxz-xI2aQpBXP64P7ce91d6F4KF7qCxGcu5J-aQnk353X6upGaB9sP-aMIFPexDSlt2Afyzmsby_SKjn8Q</recordid><startdate>20180322</startdate><enddate>20180322</enddate><creator>McQuaid, Jeffrey B.</creator><creator>Kustka, Adam B.</creator><creator>Oborník, Miroslav</creator><creator>Horák, Aleš</creator><creator>McCrow, John P.</creator><creator>Karas, Bogumil J.</creator><creator>Zheng, Hong</creator><creator>Kindeberg, Theodor</creator><creator>Andersson, Andreas J.</creator><creator>Barbeau, Katherine A.</creator><creator>Allen, Andrew E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>OTOTI</scope></search><sort><creationdate>20180322</creationdate><title>Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms</title><author>McQuaid, Jeffrey B. ; Kustka, Adam B. ; Oborník, Miroslav ; Horák, Aleš ; McCrow, John P. ; Karas, Bogumil J. ; Zheng, Hong ; Kindeberg, Theodor ; Andersson, Andreas J. ; Barbeau, Katherine A. ; Allen, Andrew E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-6730acc6e0c24d3bd0cb4a3b940a4b7e0456bebfc1e73c63c4906fec29d279993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>38/70</topic><topic>45/77</topic><topic>631/158/2446/2447</topic><topic>631/158/47/4112</topic><topic>631/181/735</topic><topic>704/106/694</topic><topic>704/829/826</topic><topic>82/1</topic><topic>96/35</topic><topic>96/44</topic><topic>96/63</topic><topic>Acidification</topic><topic>Affinity</topic><topic>Bacillariophyta</topic><topic>Bioinformatics</topic><topic>Carbon dioxide</topic><topic>Carbonates</topic><topic>Carbonic acid</topic><topic>Complementation</topic><topic>Diatoms</topic><topic>Endocytosis</topic><topic>Environmental Sciences</topic><topic>Euphotic zone</topic><topic>Genes</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Ions</topic><topic>Iron</topic><topic>Iron (Nutrient)</topic><topic>letter</topic><topic>Marine environment</topic><topic>multidisciplinary</topic><topic>Mutagenesis</topic><topic>Organic chemistry</topic><topic>Phaeodactylum tricornutum</topic><topic>Phylogenetics</topic><topic>Physiological aspects</topic><topic>Phytoplankton</topic><topic>Proteins</topic><topic>Science</topic><topic>Science &amp; Technology - Other Topics</topic><topic>Seawater</topic><topic>Short term</topic><topic>Transferrin</topic><topic>Transferrins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McQuaid, Jeffrey B.</creatorcontrib><creatorcontrib>Kustka, Adam B.</creatorcontrib><creatorcontrib>Oborník, Miroslav</creatorcontrib><creatorcontrib>Horák, Aleš</creatorcontrib><creatorcontrib>McCrow, John P.</creatorcontrib><creatorcontrib>Karas, Bogumil J.</creatorcontrib><creatorcontrib>Zheng, Hong</creatorcontrib><creatorcontrib>Kindeberg, Theodor</creatorcontrib><creatorcontrib>Andersson, Andreas J.</creatorcontrib><creatorcontrib>Barbeau, Katherine A.</creatorcontrib><creatorcontrib>Allen, Andrew E.</creatorcontrib><creatorcontrib>J. Craig Venter Inst., Inc., Rockville, MD (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McQuaid, Jeffrey B.</au><au>Kustka, Adam B.</au><au>Oborník, Miroslav</au><au>Horák, Aleš</au><au>McCrow, John P.</au><au>Karas, Bogumil J.</au><au>Zheng, Hong</au><au>Kindeberg, Theodor</au><au>Andersson, Andreas J.</au><au>Barbeau, Katherine A.</au><au>Allen, Andrew E.</au><aucorp>J. Craig Venter Inst., Inc., Rockville, MD (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-03-22</date><risdate>2018</risdate><volume>555</volume><issue>7697</issue><spage>534</spage><epage>537</epage><pages>534-537</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Phytotransferrin, a functional analogue of transferrin, has an obligate requirement for carbonate to bind iron, which suggests that acidification-driven declines in the concentration of seawater carbonate ions may negatively affect diatom iron acquisition. Iron binding in phytoplankton Iron is an essential nutrient for photosynthetic plankton (phytoplankton), but owing to its low solubility in vast areas of the ocean the concentration of this metal is low, limiting the growth of the phytoplankton. Andrew Allen and co-workers show that the phytoplankton Phaeodactylum tricornutum has developed a specific iron acquisition mechanism that relies on activity of the ISIP2A protein. ISIP2A represents a functional analogue of transferrin—a metazoan protein that binds iron with high affinity—as both proteins use similar iron binding, internalization and release mechanisms, suggesting their independent and convergent evolution. Both proteins bind iron through a synergistic interaction of ferric iron and CO 3 2− , and because ocean acidification decreases CO 3 2− concentration it may also decrease phytoplankton iron uptake and growth. In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton 1 , 2 . Although most dissolved iron in the marine environment is complexed with organic molecules 3 , picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone 4 and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms 5 . Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts 6 , 7 , including the ferric iron-concentrating protein ISIP2A 8 , but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum , and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum , the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution 8 and are abundant in marine environmental genomic datasets 9 , 10 , suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29539640</pmid><doi>10.1038/nature25982</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2018-03, Vol.555 (7697), p.534-537
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1539775
source Nature; Springer Nature - Complete Springer Journals
subjects 38/70
45/77
631/158/2446/2447
631/158/47/4112
631/181/735
704/106/694
704/829/826
82/1
96/35
96/44
96/63
Acidification
Affinity
Bacillariophyta
Bioinformatics
Carbon dioxide
Carbonates
Carbonic acid
Complementation
Diatoms
Endocytosis
Environmental Sciences
Euphotic zone
Genes
Genomes
Humanities and Social Sciences
Ions
Iron
Iron (Nutrient)
letter
Marine environment
multidisciplinary
Mutagenesis
Organic chemistry
Phaeodactylum tricornutum
Phylogenetics
Physiological aspects
Phytoplankton
Proteins
Science
Science & Technology - Other Topics
Seawater
Short term
Transferrin
Transferrins
title Carbonate-sensitive phytotransferrin controls high-affinity iron uptake in diatoms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbonate-sensitive%20phytotransferrin%20controls%20high-affinity%20iron%20uptake%20in%20diatoms&rft.jtitle=Nature%20(London)&rft.au=McQuaid,%20Jeffrey%20B.&rft.aucorp=J.%20Craig%20Venter%20Inst.,%20Inc.,%20Rockville,%20MD%20(United%20States)&rft.date=2018-03-22&rft.volume=555&rft.issue=7697&rft.spage=534&rft.epage=537&rft.pages=534-537&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature25982&rft_dat=%3Cgale_osti_%3EA531879220%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017932787&rft_id=info:pmid/29539640&rft_galeid=A531879220&rfr_iscdi=true