Monolayer atomic crystal molecular superlattices
Superlattices consisting of alternating monolayer atomic crystals and molecular layers allow access to stable phosphorene monolayers with competitive transistor performance and to bulk monolayer materials with tunable optoelectronic properties. Molecules and 2D crystals layer up This paper reports t...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-03, Vol.555 (7695), p.231-236 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 7695 |
container_start_page | 231 |
container_title | Nature (London) |
container_volume | 555 |
creator | Wang, Chen He, Qiyuan Halim, Udayabagya Liu, Yuanyue Zhu, Enbo Lin, Zhaoyang Xiao, Hai Duan, Xidong Feng, Ziying Cheng, Rui Weiss, Nathan O. Ye, Guojun Huang, Yun-Chiao Wu, Hao Cheng, Hung-Chieh Shakir, Imran Liao, Lei Chen, Xianhui Goddard III, William A. Huang, Yu Duan, Xiangfeng |
description | Superlattices consisting of alternating monolayer atomic crystals and molecular layers allow access to stable phosphorene monolayers with competitive transistor performance and to bulk monolayer materials with tunable optoelectronic properties.
Molecules and 2D crystals layer up
This paper reports the formation of superlattices of two-dimensional materials with layers of quaternary ammonium molecules introduced between the two-dimensional (2D) crystals via electrochemical intercalation. The team created a range of superlattices using different molecules that varied in size and symmetry and different two-dimensional crystals such as tungsten diselenide and molybdenum disulfide. Intercalation decoupled the 2D interlayer interactions, whereas varying the molecules adjusted the electronic and optical properties of the 2D layers. Importantly, the approach allowed the stable isolation of phosphorene monolayers (albeit within a superlattice), which has previously been challenging to achieve. They authors showed that field-effect transistor devices made with the phosphorene superlattices performed competitively compared to recently reported phosphorene-based devices.
Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials
1
,
2
,
3
. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility
4
,
5
,
6
,
7
,
8
. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures
9
,
10
,
11
but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures
12
,
13
,
14
, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transis |
doi_str_mv | 10.1038/nature25774 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A530226109</galeid><sourcerecordid>A530226109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-da04bd94859ea33aef619a5d5423bf16a4c25ea75a56d4f32d1b15acaaea782e3</originalsourceid><addsrcrecordid>eNpt0t1rFDEQAPAgFntWn3yXo74odms-9-OxFD8KFcGP5zCXnT1Tssk1yYL335v2qu2VJQ8Jk18GZjKEvGL0lFHRfvCQp4hcNY18QhZMNnUl67Z5ShaU8rairagPyfOUriilijXyGTnkXTmU2wWhX4MPDrYYl5DDaM3SxG3K4JZjcGgmB3GZpg1GBzlbg-kFORjAJXx5tx-RX58-_jz_Ul1--3xxfnZZmZqJXPVA5arvZKs6BCEAh5p1oHoluVgNrAZpuEJoFKi6l4PgPVsxBQagBFuO4ogc7_KGlK1OxmY0v03wHk3WTImulFvQ2x3axHA9Ycp6tMmgc-AxTElzyjjjtJZNoW8e0aswRV9KuFUd5aVx92oNDrX1Q8gRzE1SfaYE5bxmtCuqmlFr9BjBBY-DLeE9fzzjzcZe64fodAaV1WP5ltms7_YeFJPxT17DlJK--PF9377fWRNDShEHvYl2hLjVjOqbKdIPpqjo13e9mlYj9v_tv7Ep4GQHUrnya4z3zZzL9xe_ic0i</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012902476</pqid></control><display><type>article</type><title>Monolayer atomic crystal molecular superlattices</title><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Wang, Chen ; He, Qiyuan ; Halim, Udayabagya ; Liu, Yuanyue ; Zhu, Enbo ; Lin, Zhaoyang ; Xiao, Hai ; Duan, Xidong ; Feng, Ziying ; Cheng, Rui ; Weiss, Nathan O. ; Ye, Guojun ; Huang, Yun-Chiao ; Wu, Hao ; Cheng, Hung-Chieh ; Shakir, Imran ; Liao, Lei ; Chen, Xianhui ; Goddard III, William A. ; Huang, Yu ; Duan, Xiangfeng</creator><creatorcontrib>Wang, Chen ; He, Qiyuan ; Halim, Udayabagya ; Liu, Yuanyue ; Zhu, Enbo ; Lin, Zhaoyang ; Xiao, Hai ; Duan, Xidong ; Feng, Ziying ; Cheng, Rui ; Weiss, Nathan O. ; Ye, Guojun ; Huang, Yun-Chiao ; Wu, Hao ; Cheng, Hung-Chieh ; Shakir, Imran ; Liao, Lei ; Chen, Xianhui ; Goddard III, William A. ; Huang, Yu ; Duan, Xiangfeng ; Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><description>Superlattices consisting of alternating monolayer atomic crystals and molecular layers allow access to stable phosphorene monolayers with competitive transistor performance and to bulk monolayer materials with tunable optoelectronic properties.
Molecules and 2D crystals layer up
This paper reports the formation of superlattices of two-dimensional materials with layers of quaternary ammonium molecules introduced between the two-dimensional (2D) crystals via electrochemical intercalation. The team created a range of superlattices using different molecules that varied in size and symmetry and different two-dimensional crystals such as tungsten diselenide and molybdenum disulfide. Intercalation decoupled the 2D interlayer interactions, whereas varying the molecules adjusted the electronic and optical properties of the 2D layers. Importantly, the approach allowed the stable isolation of phosphorene monolayers (albeit within a superlattice), which has previously been challenging to achieve. They authors showed that field-effect transistor devices made with the phosphorene superlattices performed competitively compared to recently reported phosphorene-based devices.
Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials
1
,
2
,
3
. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility
4
,
5
,
6
,
7
,
8
. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures
9
,
10
,
11
but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures
12
,
13
,
14
, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 10
7
, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature25774</identifier><identifier>PMID: 29517002</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/133 ; 140/146 ; 142/126 ; 142/136 ; 639/301/357/1018 ; 639/301/357/551 ; 639/638/298/917 ; Alkali metals ; Ammonium ; Chemical vapor deposition ; Crystal structure ; Crystals ; Data analysis ; Dimensional stability ; Electrical studies ; Electrochemistry ; Electrodes ; Electrolytes ; Heterostructures ; Humanities and Social Sciences ; Intercalation ; Interlayers ; letter ; Metal ions ; Molybdenum ; Molybdenum disulfide ; Monolayers ; multidisciplinary ; Observations ; Optical properties ; Phosphorene ; Phosphorus ; Properties ; Renewable resources ; Science ; Science & Technology - Other Topics ; Semiconductor devices ; Superlattices ; Transistors ; Tungsten</subject><ispartof>Nature (London), 2018-03, Vol.555 (7695), p.231-236</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Mar 8, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-da04bd94859ea33aef619a5d5423bf16a4c25ea75a56d4f32d1b15acaaea782e3</citedby><cites>FETCH-LOGICAL-c613t-da04bd94859ea33aef619a5d5423bf16a4c25ea75a56d4f32d1b15acaaea782e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature25774$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature25774$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29517002$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1539774$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>He, Qiyuan</creatorcontrib><creatorcontrib>Halim, Udayabagya</creatorcontrib><creatorcontrib>Liu, Yuanyue</creatorcontrib><creatorcontrib>Zhu, Enbo</creatorcontrib><creatorcontrib>Lin, Zhaoyang</creatorcontrib><creatorcontrib>Xiao, Hai</creatorcontrib><creatorcontrib>Duan, Xidong</creatorcontrib><creatorcontrib>Feng, Ziying</creatorcontrib><creatorcontrib>Cheng, Rui</creatorcontrib><creatorcontrib>Weiss, Nathan O.</creatorcontrib><creatorcontrib>Ye, Guojun</creatorcontrib><creatorcontrib>Huang, Yun-Chiao</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Cheng, Hung-Chieh</creatorcontrib><creatorcontrib>Shakir, Imran</creatorcontrib><creatorcontrib>Liao, Lei</creatorcontrib><creatorcontrib>Chen, Xianhui</creatorcontrib><creatorcontrib>Goddard III, William A.</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><creatorcontrib>Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><title>Monolayer atomic crystal molecular superlattices</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Superlattices consisting of alternating monolayer atomic crystals and molecular layers allow access to stable phosphorene monolayers with competitive transistor performance and to bulk monolayer materials with tunable optoelectronic properties.
Molecules and 2D crystals layer up
This paper reports the formation of superlattices of two-dimensional materials with layers of quaternary ammonium molecules introduced between the two-dimensional (2D) crystals via electrochemical intercalation. The team created a range of superlattices using different molecules that varied in size and symmetry and different two-dimensional crystals such as tungsten diselenide and molybdenum disulfide. Intercalation decoupled the 2D interlayer interactions, whereas varying the molecules adjusted the electronic and optical properties of the 2D layers. Importantly, the approach allowed the stable isolation of phosphorene monolayers (albeit within a superlattice), which has previously been challenging to achieve. They authors showed that field-effect transistor devices made with the phosphorene superlattices performed competitively compared to recently reported phosphorene-based devices.
Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials
1
,
2
,
3
. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility
4
,
5
,
6
,
7
,
8
. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures
9
,
10
,
11
but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures
12
,
13
,
14
, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 10
7
, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.</description><subject>140/133</subject><subject>140/146</subject><subject>142/126</subject><subject>142/136</subject><subject>639/301/357/1018</subject><subject>639/301/357/551</subject><subject>639/638/298/917</subject><subject>Alkali metals</subject><subject>Ammonium</subject><subject>Chemical vapor deposition</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Data analysis</subject><subject>Dimensional stability</subject><subject>Electrical studies</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Heterostructures</subject><subject>Humanities and Social Sciences</subject><subject>Intercalation</subject><subject>Interlayers</subject><subject>letter</subject><subject>Metal ions</subject><subject>Molybdenum</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>multidisciplinary</subject><subject>Observations</subject><subject>Optical properties</subject><subject>Phosphorene</subject><subject>Phosphorus</subject><subject>Properties</subject><subject>Renewable resources</subject><subject>Science</subject><subject>Science & Technology - Other Topics</subject><subject>Semiconductor devices</subject><subject>Superlattices</subject><subject>Transistors</subject><subject>Tungsten</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpt0t1rFDEQAPAgFntWn3yXo74odms-9-OxFD8KFcGP5zCXnT1Tssk1yYL335v2qu2VJQ8Jk18GZjKEvGL0lFHRfvCQp4hcNY18QhZMNnUl67Z5ShaU8rairagPyfOUriilijXyGTnkXTmU2wWhX4MPDrYYl5DDaM3SxG3K4JZjcGgmB3GZpg1GBzlbg-kFORjAJXx5tx-RX58-_jz_Ul1--3xxfnZZmZqJXPVA5arvZKs6BCEAh5p1oHoluVgNrAZpuEJoFKi6l4PgPVsxBQagBFuO4ogc7_KGlK1OxmY0v03wHk3WTImulFvQ2x3axHA9Ycp6tMmgc-AxTElzyjjjtJZNoW8e0aswRV9KuFUd5aVx92oNDrX1Q8gRzE1SfaYE5bxmtCuqmlFr9BjBBY-DLeE9fzzjzcZe64fodAaV1WP5ltms7_YeFJPxT17DlJK--PF9377fWRNDShEHvYl2hLjVjOqbKdIPpqjo13e9mlYj9v_tv7Ep4GQHUrnya4z3zZzL9xe_ic0i</recordid><startdate>20180308</startdate><enddate>20180308</enddate><creator>Wang, Chen</creator><creator>He, Qiyuan</creator><creator>Halim, Udayabagya</creator><creator>Liu, Yuanyue</creator><creator>Zhu, Enbo</creator><creator>Lin, Zhaoyang</creator><creator>Xiao, Hai</creator><creator>Duan, Xidong</creator><creator>Feng, Ziying</creator><creator>Cheng, Rui</creator><creator>Weiss, Nathan O.</creator><creator>Ye, Guojun</creator><creator>Huang, Yun-Chiao</creator><creator>Wu, Hao</creator><creator>Cheng, Hung-Chieh</creator><creator>Shakir, Imran</creator><creator>Liao, Lei</creator><creator>Chen, Xianhui</creator><creator>Goddard III, William A.</creator><creator>Huang, Yu</creator><creator>Duan, Xiangfeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20180308</creationdate><title>Monolayer atomic crystal molecular superlattices</title><author>Wang, Chen ; He, Qiyuan ; Halim, Udayabagya ; Liu, Yuanyue ; Zhu, Enbo ; Lin, Zhaoyang ; Xiao, Hai ; Duan, Xidong ; Feng, Ziying ; Cheng, Rui ; Weiss, Nathan O. ; Ye, Guojun ; Huang, Yun-Chiao ; Wu, Hao ; Cheng, Hung-Chieh ; Shakir, Imran ; Liao, Lei ; Chen, Xianhui ; Goddard III, William A. ; Huang, Yu ; Duan, Xiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-da04bd94859ea33aef619a5d5423bf16a4c25ea75a56d4f32d1b15acaaea782e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/133</topic><topic>140/146</topic><topic>142/126</topic><topic>142/136</topic><topic>639/301/357/1018</topic><topic>639/301/357/551</topic><topic>639/638/298/917</topic><topic>Alkali metals</topic><topic>Ammonium</topic><topic>Chemical vapor deposition</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Data analysis</topic><topic>Dimensional stability</topic><topic>Electrical studies</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Heterostructures</topic><topic>Humanities and Social Sciences</topic><topic>Intercalation</topic><topic>Interlayers</topic><topic>letter</topic><topic>Metal ions</topic><topic>Molybdenum</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>multidisciplinary</topic><topic>Observations</topic><topic>Optical properties</topic><topic>Phosphorene</topic><topic>Phosphorus</topic><topic>Properties</topic><topic>Renewable resources</topic><topic>Science</topic><topic>Science & Technology - Other Topics</topic><topic>Semiconductor devices</topic><topic>Superlattices</topic><topic>Transistors</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>He, Qiyuan</creatorcontrib><creatorcontrib>Halim, Udayabagya</creatorcontrib><creatorcontrib>Liu, Yuanyue</creatorcontrib><creatorcontrib>Zhu, Enbo</creatorcontrib><creatorcontrib>Lin, Zhaoyang</creatorcontrib><creatorcontrib>Xiao, Hai</creatorcontrib><creatorcontrib>Duan, Xidong</creatorcontrib><creatorcontrib>Feng, Ziying</creatorcontrib><creatorcontrib>Cheng, Rui</creatorcontrib><creatorcontrib>Weiss, Nathan O.</creatorcontrib><creatorcontrib>Ye, Guojun</creatorcontrib><creatorcontrib>Huang, Yun-Chiao</creatorcontrib><creatorcontrib>Wu, Hao</creatorcontrib><creatorcontrib>Cheng, Hung-Chieh</creatorcontrib><creatorcontrib>Shakir, Imran</creatorcontrib><creatorcontrib>Liao, Lei</creatorcontrib><creatorcontrib>Chen, Xianhui</creatorcontrib><creatorcontrib>Goddard III, William A.</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Duan, Xiangfeng</creatorcontrib><creatorcontrib>Univ. of Southern California, Los Angeles, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chen</au><au>He, Qiyuan</au><au>Halim, Udayabagya</au><au>Liu, Yuanyue</au><au>Zhu, Enbo</au><au>Lin, Zhaoyang</au><au>Xiao, Hai</au><au>Duan, Xidong</au><au>Feng, Ziying</au><au>Cheng, Rui</au><au>Weiss, Nathan O.</au><au>Ye, Guojun</au><au>Huang, Yun-Chiao</au><au>Wu, Hao</au><au>Cheng, Hung-Chieh</au><au>Shakir, Imran</au><au>Liao, Lei</au><au>Chen, Xianhui</au><au>Goddard III, William A.</au><au>Huang, Yu</au><au>Duan, Xiangfeng</au><aucorp>Univ. of Southern California, Los Angeles, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolayer atomic crystal molecular superlattices</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-03-08</date><risdate>2018</risdate><volume>555</volume><issue>7695</issue><spage>231</spage><epage>236</epage><pages>231-236</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Superlattices consisting of alternating monolayer atomic crystals and molecular layers allow access to stable phosphorene monolayers with competitive transistor performance and to bulk monolayer materials with tunable optoelectronic properties.
Molecules and 2D crystals layer up
This paper reports the formation of superlattices of two-dimensional materials with layers of quaternary ammonium molecules introduced between the two-dimensional (2D) crystals via electrochemical intercalation. The team created a range of superlattices using different molecules that varied in size and symmetry and different two-dimensional crystals such as tungsten diselenide and molybdenum disulfide. Intercalation decoupled the 2D interlayer interactions, whereas varying the molecules adjusted the electronic and optical properties of the 2D layers. Importantly, the approach allowed the stable isolation of phosphorene monolayers (albeit within a superlattice), which has previously been challenging to achieve. They authors showed that field-effect transistor devices made with the phosphorene superlattices performed competitively compared to recently reported phosphorene-based devices.
Artificial superlattices, based on van der Waals heterostructures of two-dimensional atomic crystals such as graphene or molybdenum disulfide, offer technological opportunities beyond the reach of existing materials
1
,
2
,
3
. Typical strategies for creating such artificial superlattices rely on arduous layer-by-layer exfoliation and restacking, with limited yield and reproducibility
4
,
5
,
6
,
7
,
8
. The bottom-up approach of using chemical-vapour deposition produces high-quality heterostructures
9
,
10
,
11
but becomes increasingly difficult for high-order superlattices. The intercalation of selected two-dimensional atomic crystals with alkali metal ions offers an alternative way to superlattice structures
12
,
13
,
14
, but these usually have poor stability and seriously altered electronic properties. Here we report an electrochemical molecular intercalation approach to a new class of stable superlattices in which monolayer atomic crystals alternate with molecular layers. Using black phosphorus as a model system, we show that intercalation with cetyl-trimethylammonium bromide produces monolayer phosphorene molecular superlattices in which the interlayer distance is more than double that in black phosphorus, effectively isolating the phosphorene monolayers. Electrical transport studies of transistors fabricated from the monolayer phosphorene molecular superlattice show an on/off current ratio exceeding 10
7
, along with excellent mobility and superior stability. We further show that several different two-dimensional atomic crystals, such as molybdenum disulfide and tungsten diselenide, can be intercalated with quaternary ammonium molecules of varying sizes and symmetries to produce a broad class of superlattices with tailored molecular structures, interlayer distances, phase compositions, electronic and optical properties. These studies define a versatile material platform for fundamental studies and potential technological applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29517002</pmid><doi>10.1038/nature25774</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-03, Vol.555 (7695), p.231-236 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_osti_scitechconnect_1539774 |
source | SpringerLink Journals; Nature Journals Online |
subjects | 140/133 140/146 142/126 142/136 639/301/357/1018 639/301/357/551 639/638/298/917 Alkali metals Ammonium Chemical vapor deposition Crystal structure Crystals Data analysis Dimensional stability Electrical studies Electrochemistry Electrodes Electrolytes Heterostructures Humanities and Social Sciences Intercalation Interlayers letter Metal ions Molybdenum Molybdenum disulfide Monolayers multidisciplinary Observations Optical properties Phosphorene Phosphorus Properties Renewable resources Science Science & Technology - Other Topics Semiconductor devices Superlattices Transistors Tungsten |
title | Monolayer atomic crystal molecular superlattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolayer%20atomic%20crystal%20molecular%20superlattices&rft.jtitle=Nature%20(London)&rft.au=Wang,%20Chen&rft.aucorp=Univ.%20of%20Southern%20California,%20Los%20Angeles,%20CA%20(United%20States)&rft.date=2018-03-08&rft.volume=555&rft.issue=7695&rft.spage=231&rft.epage=236&rft.pages=231-236&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature25774&rft_dat=%3Cgale_osti_%3EA530226109%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012902476&rft_id=info:pmid/29517002&rft_galeid=A530226109&rfr_iscdi=true |