Alkali-Driven Disassembly and Reassembly of Molecular Niobium Oxide in Water

Counterions are deemed “spectators” in aqueous solutions of cationic or anionic molecular metal-oxo clusters. While pH and concentration drive aqueous metal speciation as a first approximation, the important effect of counterions is usually overlooked and never considered in standard Pourbaix databa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2018-08, Vol.140 (34), p.10803-10813
Hauptverfasser: Sures, Dylan, Segado, Mireia, Bo, Carles, Nyman, May
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10813
container_issue 34
container_start_page 10803
container_title Journal of the American Chemical Society
container_volume 140
creator Sures, Dylan
Segado, Mireia
Bo, Carles
Nyman, May
description Counterions are deemed “spectators” in aqueous solutions of cationic or anionic molecular metal-oxo clusters. While pH and concentration drive aqueous metal speciation as a first approximation, the important effect of counterions is usually overlooked and never considered in standard Pourbaix databases. Alkali counterions for polyoxometalate (POM) clusters control solubility with distinct periodic trends, but evidence for alkali control over speciation is ambiguous. Here we show that a simple Nb-POM, [Nb10O28]6– ({Nb10}), converts to oligomers of (H x Nb24O72)(24–x)– ({Nb24}) upon adding only alkali chloride salts, even in buffered neutral solutions. Raman and X-ray scattering reveal that the rate of {Nb10} to {Nb24} conversion increases with alkali cation radius and cation concentration. Cation-bridged oligomers of {Nb24} y (y = 2,4) are defined by comparing experimental to computed small-angle X-ray scattering spectra. Computational studies and mass spectrometry indicate that the alkalis open the compact {Nb10} cluster in conjunction with protonation of a heptamer {Nb7} intermediate, in which alkali-{Nb10} association at key locations on the cluster initiates the reaction. Computation also explains the alkali periodic trend for {Nb10} to {Nb24} conversion; larger alkalis more effectively destabilize {Nb10}. This periodic trend asserts the hypothesis that Nb-cluster speciation near neutral pH is driven by the alkali cations in the absence of added base or acid. The extremely high solubility of these 3.5 nm polyoxoanion assemblies2 M Nb at near neutral pHis both surprising and exploitable for aqueous synthesis of niobate thin films or nanomaterials used in energy and microelectronics applications.
doi_str_mv 10.1021/jacs.8b05015
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2066473653</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-efaf5c59e0a72f1386a5203c0aea393dddb1ddbfa36fcc5da5936601a7d30e513</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRbK3ePEvw5MHU_ehumqO0fkG1IIrHZbKZ4NYkW3cTsf_elNZ68TAMA8-8MzyEnDI6ZJSzqwWYMBxnVFIm90ifSU5jybjaJ31KKY-TsRI9chTCohtHfMwOSY-naSIlV30yuy4_oLTx1NsvrKOpDRACVlm5iqDOo2fcja6IHl2Jpi3BR0_WZbatovm3zTGydfQGDfpjclBAGfBk2wfk9fbmZXIfz-Z3D5PrWQxCsibGAgppZIoUEl4wMVbQPS0MBQSRijzPM9ZVAUIVxsgcZCqUogySXFCUTAzI-SbXhcbqYGyD5t24ukbTaCZFmtC0gy420NK7zxZDoysbDJYl1OjaoDlVapQIJUWHXm5Q410IHgu99LYCv9KM6rVkvZast5I7_Gyb3GYV5jv41-rf6fXWwrW-7mz8n_UDsfiE0w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2066473653</pqid></control><display><type>article</type><title>Alkali-Driven Disassembly and Reassembly of Molecular Niobium Oxide in Water</title><source>American Chemical Society Journals</source><creator>Sures, Dylan ; Segado, Mireia ; Bo, Carles ; Nyman, May</creator><creatorcontrib>Sures, Dylan ; Segado, Mireia ; Bo, Carles ; Nyman, May ; Oregon State Univ., Corvallis, OR (United States)</creatorcontrib><description>Counterions are deemed “spectators” in aqueous solutions of cationic or anionic molecular metal-oxo clusters. While pH and concentration drive aqueous metal speciation as a first approximation, the important effect of counterions is usually overlooked and never considered in standard Pourbaix databases. Alkali counterions for polyoxometalate (POM) clusters control solubility with distinct periodic trends, but evidence for alkali control over speciation is ambiguous. Here we show that a simple Nb-POM, [Nb10O28]6– ({Nb10}), converts to oligomers of (H x Nb24O72)(24–x)– ({Nb24}) upon adding only alkali chloride salts, even in buffered neutral solutions. Raman and X-ray scattering reveal that the rate of {Nb10} to {Nb24} conversion increases with alkali cation radius and cation concentration. Cation-bridged oligomers of {Nb24} y (y = 2,4) are defined by comparing experimental to computed small-angle X-ray scattering spectra. Computational studies and mass spectrometry indicate that the alkalis open the compact {Nb10} cluster in conjunction with protonation of a heptamer {Nb7} intermediate, in which alkali-{Nb10} association at key locations on the cluster initiates the reaction. Computation also explains the alkali periodic trend for {Nb10} to {Nb24} conversion; larger alkalis more effectively destabilize {Nb10}. This periodic trend asserts the hypothesis that Nb-cluster speciation near neutral pH is driven by the alkali cations in the absence of added base or acid. The extremely high solubility of these 3.5 nm polyoxoanion assemblies2 M Nb at near neutral pHis both surprising and exploitable for aqueous synthesis of niobate thin films or nanomaterials used in energy and microelectronics applications.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.8b05015</identifier><identifier>PMID: 29975526</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry</subject><ispartof>Journal of the American Chemical Society, 2018-08, Vol.140 (34), p.10803-10813</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-efaf5c59e0a72f1386a5203c0aea393dddb1ddbfa36fcc5da5936601a7d30e513</citedby><cites>FETCH-LOGICAL-a351t-efaf5c59e0a72f1386a5203c0aea393dddb1ddbfa36fcc5da5936601a7d30e513</cites><orcidid>0000-0002-1761-9825 ; 0000-0002-1787-0518 ; 0000-0001-9581-2922 ; 0000000217619825 ; 0000000195812922 ; 0000000217870518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.8b05015$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.8b05015$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29975526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1539709$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sures, Dylan</creatorcontrib><creatorcontrib>Segado, Mireia</creatorcontrib><creatorcontrib>Bo, Carles</creatorcontrib><creatorcontrib>Nyman, May</creatorcontrib><creatorcontrib>Oregon State Univ., Corvallis, OR (United States)</creatorcontrib><title>Alkali-Driven Disassembly and Reassembly of Molecular Niobium Oxide in Water</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Counterions are deemed “spectators” in aqueous solutions of cationic or anionic molecular metal-oxo clusters. While pH and concentration drive aqueous metal speciation as a first approximation, the important effect of counterions is usually overlooked and never considered in standard Pourbaix databases. Alkali counterions for polyoxometalate (POM) clusters control solubility with distinct periodic trends, but evidence for alkali control over speciation is ambiguous. Here we show that a simple Nb-POM, [Nb10O28]6– ({Nb10}), converts to oligomers of (H x Nb24O72)(24–x)– ({Nb24}) upon adding only alkali chloride salts, even in buffered neutral solutions. Raman and X-ray scattering reveal that the rate of {Nb10} to {Nb24} conversion increases with alkali cation radius and cation concentration. Cation-bridged oligomers of {Nb24} y (y = 2,4) are defined by comparing experimental to computed small-angle X-ray scattering spectra. Computational studies and mass spectrometry indicate that the alkalis open the compact {Nb10} cluster in conjunction with protonation of a heptamer {Nb7} intermediate, in which alkali-{Nb10} association at key locations on the cluster initiates the reaction. Computation also explains the alkali periodic trend for {Nb10} to {Nb24} conversion; larger alkalis more effectively destabilize {Nb10}. This periodic trend asserts the hypothesis that Nb-cluster speciation near neutral pH is driven by the alkali cations in the absence of added base or acid. The extremely high solubility of these 3.5 nm polyoxoanion assemblies2 M Nb at near neutral pHis both surprising and exploitable for aqueous synthesis of niobate thin films or nanomaterials used in energy and microelectronics applications.</description><subject>Chemistry</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRbK3ePEvw5MHU_ehumqO0fkG1IIrHZbKZ4NYkW3cTsf_elNZ68TAMA8-8MzyEnDI6ZJSzqwWYMBxnVFIm90ifSU5jybjaJ31KKY-TsRI9chTCohtHfMwOSY-naSIlV30yuy4_oLTx1NsvrKOpDRACVlm5iqDOo2fcja6IHl2Jpi3BR0_WZbatovm3zTGydfQGDfpjclBAGfBk2wfk9fbmZXIfz-Z3D5PrWQxCsibGAgppZIoUEl4wMVbQPS0MBQSRijzPM9ZVAUIVxsgcZCqUogySXFCUTAzI-SbXhcbqYGyD5t24ukbTaCZFmtC0gy420NK7zxZDoysbDJYl1OjaoDlVapQIJUWHXm5Q410IHgu99LYCv9KM6rVkvZast5I7_Gyb3GYV5jv41-rf6fXWwrW-7mz8n_UDsfiE0w</recordid><startdate>20180829</startdate><enddate>20180829</enddate><creator>Sures, Dylan</creator><creator>Segado, Mireia</creator><creator>Bo, Carles</creator><creator>Nyman, May</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-1761-9825</orcidid><orcidid>https://orcid.org/0000-0002-1787-0518</orcidid><orcidid>https://orcid.org/0000-0001-9581-2922</orcidid><orcidid>https://orcid.org/0000000217619825</orcidid><orcidid>https://orcid.org/0000000195812922</orcidid><orcidid>https://orcid.org/0000000217870518</orcidid></search><sort><creationdate>20180829</creationdate><title>Alkali-Driven Disassembly and Reassembly of Molecular Niobium Oxide in Water</title><author>Sures, Dylan ; Segado, Mireia ; Bo, Carles ; Nyman, May</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-efaf5c59e0a72f1386a5203c0aea393dddb1ddbfa36fcc5da5936601a7d30e513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sures, Dylan</creatorcontrib><creatorcontrib>Segado, Mireia</creatorcontrib><creatorcontrib>Bo, Carles</creatorcontrib><creatorcontrib>Nyman, May</creatorcontrib><creatorcontrib>Oregon State Univ., Corvallis, OR (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sures, Dylan</au><au>Segado, Mireia</au><au>Bo, Carles</au><au>Nyman, May</au><aucorp>Oregon State Univ., Corvallis, OR (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Alkali-Driven Disassembly and Reassembly of Molecular Niobium Oxide in Water</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2018-08-29</date><risdate>2018</risdate><volume>140</volume><issue>34</issue><spage>10803</spage><epage>10813</epage><pages>10803-10813</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Counterions are deemed “spectators” in aqueous solutions of cationic or anionic molecular metal-oxo clusters. While pH and concentration drive aqueous metal speciation as a first approximation, the important effect of counterions is usually overlooked and never considered in standard Pourbaix databases. Alkali counterions for polyoxometalate (POM) clusters control solubility with distinct periodic trends, but evidence for alkali control over speciation is ambiguous. Here we show that a simple Nb-POM, [Nb10O28]6– ({Nb10}), converts to oligomers of (H x Nb24O72)(24–x)– ({Nb24}) upon adding only alkali chloride salts, even in buffered neutral solutions. Raman and X-ray scattering reveal that the rate of {Nb10} to {Nb24} conversion increases with alkali cation radius and cation concentration. Cation-bridged oligomers of {Nb24} y (y = 2,4) are defined by comparing experimental to computed small-angle X-ray scattering spectra. Computational studies and mass spectrometry indicate that the alkalis open the compact {Nb10} cluster in conjunction with protonation of a heptamer {Nb7} intermediate, in which alkali-{Nb10} association at key locations on the cluster initiates the reaction. Computation also explains the alkali periodic trend for {Nb10} to {Nb24} conversion; larger alkalis more effectively destabilize {Nb10}. This periodic trend asserts the hypothesis that Nb-cluster speciation near neutral pH is driven by the alkali cations in the absence of added base or acid. The extremely high solubility of these 3.5 nm polyoxoanion assemblies2 M Nb at near neutral pHis both surprising and exploitable for aqueous synthesis of niobate thin films or nanomaterials used in energy and microelectronics applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29975526</pmid><doi>10.1021/jacs.8b05015</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-1761-9825</orcidid><orcidid>https://orcid.org/0000-0002-1787-0518</orcidid><orcidid>https://orcid.org/0000-0001-9581-2922</orcidid><orcidid>https://orcid.org/0000000217619825</orcidid><orcidid>https://orcid.org/0000000195812922</orcidid><orcidid>https://orcid.org/0000000217870518</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2018-08, Vol.140 (34), p.10803-10813
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1539709
source American Chemical Society Journals
subjects Chemistry
title Alkali-Driven Disassembly and Reassembly of Molecular Niobium Oxide in Water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T15%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Alkali-Driven%20Disassembly%20and%20Reassembly%20of%20Molecular%20Niobium%20Oxide%20in%20Water&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Sures,%20Dylan&rft.aucorp=Oregon%20State%20Univ.,%20Corvallis,%20OR%20(United%20States)&rft.date=2018-08-29&rft.volume=140&rft.issue=34&rft.spage=10803&rft.epage=10813&rft.pages=10803-10813&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.8b05015&rft_dat=%3Cproquest_osti_%3E2066473653%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2066473653&rft_id=info:pmid/29975526&rfr_iscdi=true