Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation

Metal halide perovskites are attractive candidates for the wide band gap absorber in tandem solar cells. While their band gap can be tuned by partial halide substitution, mixed halide perovskites often have lower open-circuit voltage than would be expected and experience photoinduced trap formation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2018-02, Vol.3 (2), p.428-435
Hauptverfasser: Bush, Kevin A, Frohna, Kyle, Prasanna, Rohit, Beal, Rachel E, Leijtens, Tomas, Swifter, Simon A, McGehee, Michael D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 435
container_issue 2
container_start_page 428
container_title ACS energy letters
container_volume 3
creator Bush, Kevin A
Frohna, Kyle
Prasanna, Rohit
Beal, Rachel E
Leijtens, Tomas
Swifter, Simon A
McGehee, Michael D
description Metal halide perovskites are attractive candidates for the wide band gap absorber in tandem solar cells. While their band gap can be tuned by partial halide substitution, mixed halide perovskites often have lower open-circuit voltage than would be expected and experience photoinduced trap formation caused by halide segregation. We investigate solar cell performance and photostability across a compositional space of formamidinium (FA) and cesium (Cs) at the A-site at various halide compositions and show that using more Cs at the A-site rather than more Br at the X-site to raise band gap is more ideal as it improves both V OC and photostability. We develop band gap maps and design criteria for the selection of perovskite compositions within the Cs x FA1–x Pb­(Br y I1–y )3, space. With this, we identify perovskites with tandem-relevant band gaps of 1.68 and 1.75 eV that demonstrate high device efficiencies of 17.4 and 16.3%, respectively, and significantly improved photostability compared to that of the higher Br-containing compositions.
doi_str_mv 10.1021/acsenergylett.7b01255
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c646875088</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-f64fd7bc6687d6dd70735fc6bd433b91808331345f4f568673b9bbbe47ce4cf3</originalsourceid><addsrcrecordid>eNqFUE1rAjEQXUoLFetPKITetYnZZNdjK9YKQgWFHpdsMtmN1WRJYov0zzeih_ZU5jDD-5gZXpbdEzwieEwehQxgwTfHHcQ4KmpMxoxdZb0xLfGwJBN2_Wu-zQYhbDHGhJcsVS_7nrp954KJxlmxQzPbGAvgjW2Qdh7NtDbSgI3o3ShAz8IqNBcdWoF3n-HDRAjoy8QWLfZdQkChdRS12Zl4RNGhVeuiM1YdZGJWrQiA1tB4aMTp3l12o8UuwODS-9nmZbaZvg6Xb_PF9Gk5FJRP4lDzXKuilpyXheJKFbigTEteq5zSekJKXFJKaM50rhkveZHAuq4hLyTkUtN-9nBe60I0VZDpadlKZy3IWBFGJ4yWScTOIuldCB501XmzF_5YEVydgq7-BF1dgk4-cvYlutq6g08phn88P6iQiRk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation</title><source>ACS Publications</source><creator>Bush, Kevin A ; Frohna, Kyle ; Prasanna, Rohit ; Beal, Rachel E ; Leijtens, Tomas ; Swifter, Simon A ; McGehee, Michael D</creator><creatorcontrib>Bush, Kevin A ; Frohna, Kyle ; Prasanna, Rohit ; Beal, Rachel E ; Leijtens, Tomas ; Swifter, Simon A ; McGehee, Michael D ; Stanford Univ., CA (United States)</creatorcontrib><description>Metal halide perovskites are attractive candidates for the wide band gap absorber in tandem solar cells. While their band gap can be tuned by partial halide substitution, mixed halide perovskites often have lower open-circuit voltage than would be expected and experience photoinduced trap formation caused by halide segregation. We investigate solar cell performance and photostability across a compositional space of formamidinium (FA) and cesium (Cs) at the A-site at various halide compositions and show that using more Cs at the A-site rather than more Br at the X-site to raise band gap is more ideal as it improves both V OC and photostability. We develop band gap maps and design criteria for the selection of perovskite compositions within the Cs x FA1–x Pb­(Br y I1–y )3, space. With this, we identify perovskites with tandem-relevant band gaps of 1.68 and 1.75 eV that demonstrate high device efficiencies of 17.4 and 16.3%, respectively, and significantly improved photostability compared to that of the higher Br-containing compositions.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.7b01255</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Electrochemistry ; Energy &amp; Fuels ; Materials Science ; Science &amp; Technology - Other Topics</subject><ispartof>ACS energy letters, 2018-02, Vol.3 (2), p.428-435</ispartof><rights>Copyright © 2018 American Chemical Society</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-f64fd7bc6687d6dd70735fc6bd433b91808331345f4f568673b9bbbe47ce4cf3</citedby><cites>FETCH-LOGICAL-a369t-f64fd7bc6687d6dd70735fc6bd433b91808331345f4f568673b9bbbe47ce4cf3</cites><orcidid>0000-0003-1813-1300 ; 0000-0002-9741-2348 ; 0000-0001-9609-9030 ; 0000-0001-9313-7281 ; 0000000318131300 ; 0000000297412348 ; 0000000193137281 ; 0000000196099030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.7b01255$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.7b01255$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1539538$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bush, Kevin A</creatorcontrib><creatorcontrib>Frohna, Kyle</creatorcontrib><creatorcontrib>Prasanna, Rohit</creatorcontrib><creatorcontrib>Beal, Rachel E</creatorcontrib><creatorcontrib>Leijtens, Tomas</creatorcontrib><creatorcontrib>Swifter, Simon A</creatorcontrib><creatorcontrib>McGehee, Michael D</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><title>Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Metal halide perovskites are attractive candidates for the wide band gap absorber in tandem solar cells. While their band gap can be tuned by partial halide substitution, mixed halide perovskites often have lower open-circuit voltage than would be expected and experience photoinduced trap formation caused by halide segregation. We investigate solar cell performance and photostability across a compositional space of formamidinium (FA) and cesium (Cs) at the A-site at various halide compositions and show that using more Cs at the A-site rather than more Br at the X-site to raise band gap is more ideal as it improves both V OC and photostability. We develop band gap maps and design criteria for the selection of perovskite compositions within the Cs x FA1–x Pb­(Br y I1–y )3, space. With this, we identify perovskites with tandem-relevant band gaps of 1.68 and 1.75 eV that demonstrate high device efficiencies of 17.4 and 16.3%, respectively, and significantly improved photostability compared to that of the higher Br-containing compositions.</description><subject>Chemistry</subject><subject>Electrochemistry</subject><subject>Energy &amp; Fuels</subject><subject>Materials Science</subject><subject>Science &amp; Technology - Other Topics</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUE1rAjEQXUoLFetPKITetYnZZNdjK9YKQgWFHpdsMtmN1WRJYov0zzeih_ZU5jDD-5gZXpbdEzwieEwehQxgwTfHHcQ4KmpMxoxdZb0xLfGwJBN2_Wu-zQYhbDHGhJcsVS_7nrp954KJxlmxQzPbGAvgjW2Qdh7NtDbSgI3o3ShAz8IqNBcdWoF3n-HDRAjoy8QWLfZdQkChdRS12Zl4RNGhVeuiM1YdZGJWrQiA1tB4aMTp3l12o8UuwODS-9nmZbaZvg6Xb_PF9Gk5FJRP4lDzXKuilpyXheJKFbigTEteq5zSekJKXFJKaM50rhkveZHAuq4hLyTkUtN-9nBe60I0VZDpadlKZy3IWBFGJ4yWScTOIuldCB501XmzF_5YEVydgq7-BF1dgk4-cvYlutq6g08phn88P6iQiRk</recordid><startdate>20180209</startdate><enddate>20180209</enddate><creator>Bush, Kevin A</creator><creator>Frohna, Kyle</creator><creator>Prasanna, Rohit</creator><creator>Beal, Rachel E</creator><creator>Leijtens, Tomas</creator><creator>Swifter, Simon A</creator><creator>McGehee, Michael D</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1813-1300</orcidid><orcidid>https://orcid.org/0000-0002-9741-2348</orcidid><orcidid>https://orcid.org/0000-0001-9609-9030</orcidid><orcidid>https://orcid.org/0000-0001-9313-7281</orcidid><orcidid>https://orcid.org/0000000318131300</orcidid><orcidid>https://orcid.org/0000000297412348</orcidid><orcidid>https://orcid.org/0000000193137281</orcidid><orcidid>https://orcid.org/0000000196099030</orcidid></search><sort><creationdate>20180209</creationdate><title>Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation</title><author>Bush, Kevin A ; Frohna, Kyle ; Prasanna, Rohit ; Beal, Rachel E ; Leijtens, Tomas ; Swifter, Simon A ; McGehee, Michael D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-f64fd7bc6687d6dd70735fc6bd433b91808331345f4f568673b9bbbe47ce4cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Electrochemistry</topic><topic>Energy &amp; Fuels</topic><topic>Materials Science</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>online_resources</toplevel><creatorcontrib>Bush, Kevin A</creatorcontrib><creatorcontrib>Frohna, Kyle</creatorcontrib><creatorcontrib>Prasanna, Rohit</creatorcontrib><creatorcontrib>Beal, Rachel E</creatorcontrib><creatorcontrib>Leijtens, Tomas</creatorcontrib><creatorcontrib>Swifter, Simon A</creatorcontrib><creatorcontrib>McGehee, Michael D</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bush, Kevin A</au><au>Frohna, Kyle</au><au>Prasanna, Rohit</au><au>Beal, Rachel E</au><au>Leijtens, Tomas</au><au>Swifter, Simon A</au><au>McGehee, Michael D</au><aucorp>Stanford Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2018-02-09</date><risdate>2018</risdate><volume>3</volume><issue>2</issue><spage>428</spage><epage>435</epage><pages>428-435</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Metal halide perovskites are attractive candidates for the wide band gap absorber in tandem solar cells. While their band gap can be tuned by partial halide substitution, mixed halide perovskites often have lower open-circuit voltage than would be expected and experience photoinduced trap formation caused by halide segregation. We investigate solar cell performance and photostability across a compositional space of formamidinium (FA) and cesium (Cs) at the A-site at various halide compositions and show that using more Cs at the A-site rather than more Br at the X-site to raise band gap is more ideal as it improves both V OC and photostability. We develop band gap maps and design criteria for the selection of perovskite compositions within the Cs x FA1–x Pb­(Br y I1–y )3, space. With this, we identify perovskites with tandem-relevant band gaps of 1.68 and 1.75 eV that demonstrate high device efficiencies of 17.4 and 16.3%, respectively, and significantly improved photostability compared to that of the higher Br-containing compositions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.7b01255</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1813-1300</orcidid><orcidid>https://orcid.org/0000-0002-9741-2348</orcidid><orcidid>https://orcid.org/0000-0001-9609-9030</orcidid><orcidid>https://orcid.org/0000-0001-9313-7281</orcidid><orcidid>https://orcid.org/0000000318131300</orcidid><orcidid>https://orcid.org/0000000297412348</orcidid><orcidid>https://orcid.org/0000000193137281</orcidid><orcidid>https://orcid.org/0000000196099030</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2380-8195
ispartof ACS energy letters, 2018-02, Vol.3 (2), p.428-435
issn 2380-8195
2380-8195
language eng
recordid cdi_osti_scitechconnect_1539538
source ACS Publications
subjects Chemistry
Electrochemistry
Energy & Fuels
Materials Science
Science & Technology - Other Topics
title Compositional Engineering for Efficient Wide Band Gap Perovskites with Improved Stability to Photoinduced Phase Segregation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositional%20Engineering%20for%20Efficient%20Wide%20Band%20Gap%20Perovskites%20with%20Improved%20Stability%20to%20Photoinduced%20Phase%20Segregation&rft.jtitle=ACS%20energy%20letters&rft.au=Bush,%20Kevin%20A&rft.aucorp=Stanford%20Univ.,%20CA%20(United%20States)&rft.date=2018-02-09&rft.volume=3&rft.issue=2&rft.spage=428&rft.epage=435&rft.pages=428-435&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.7b01255&rft_dat=%3Cacs_osti_%3Ec646875088%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true