Electronically Tunable Perfect Absorption in Graphene

The demand for dynamically tunable light modulation in flat optics applications has grown in recent years. Graphene nanostructures have been extensively studied as means of creating large effective index tunability, motivated by theoretical predictions of the potential for unity absorption in resona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2018-02, Vol.18 (2), p.971-979
Hauptverfasser: Kim, Seyoon, Jang, Min Seok, Brar, Victor W, Mauser, Kelly W, Kim, Laura, Atwater, Harry A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 979
container_issue 2
container_start_page 971
container_title Nano letters
container_volume 18
creator Kim, Seyoon
Jang, Min Seok
Brar, Victor W
Mauser, Kelly W
Kim, Laura
Atwater, Harry A
description The demand for dynamically tunable light modulation in flat optics applications has grown in recent years. Graphene nanostructures have been extensively studied as means of creating large effective index tunability, motivated by theoretical predictions of the potential for unity absorption in resonantly excited graphene nanostructures. However, the poor radiative coupling to graphene plasmonic nanoresonators and low graphene carrier mobilities from imperfections in processed graphene samples have led to low modulation depths in experimental attempts at creating tunable absorption in graphene devices. Here we demonstrate electronically tunable perfect absorption in graphene, covering less than 10% of the surface area, by incorporating multiscale nanophotonic structures composed of a low-permittivity substrate and subwavelength noble metal plasmonic antennas to enhance the radiative coupling to deep subwavelength graphene nanoresonators. To design the structures, we devised a graphical method based on effective surface admittance, elucidating the origin of perfect absorption arising from critical coupling between radiation and graphene plasmonic modes. Experimental measurements reveal 96.9% absorption in the graphene plasmonic nanostructure at 1389 cm–1, with an on/off modulation efficiency of 95.9% in reflection.
doi_str_mv 10.1021/acs.nanolett.7b04393
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1539392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>b34889558</sourcerecordid><originalsourceid>FETCH-LOGICAL-a441t-faf196876ebee7ff3fc5bef28873efaceefcca56ecb411dcc2f08f6332431c6d3</originalsourceid><addsrcrecordid>eNp9kM1rAjEQxUNpqdb2Pyhl6X1tPvYrRxG1BaE92HPIjhNcWZMlWQ_-942seuxpBua9x7wfIa-MThnl7ENDmFptXYt9Py1rmgkp7siY5YKmhZT8_rZX2Yg8hbCnlEqR00cy4lJwyqkYk3zRIvTe2QZ0256SzdHqusXkB72Jh2RWB-e7vnE2aWyy8rrbocVn8mB0G_DlMifkd7nYzD_T9ffqaz5bpzrLWJ8abZgsqrLAGrE0RhjIazS8qkqBRgOiAdB5gVBnjG0BuKGVKYTgmWBQbMWEvA-5LvSNCtD0CDtw1sbXVGwnheRRlA0i8C4Ej0Z1vjlof1KMqjMqFVGpKyp1QRVtb4OtO9YH3N5MVzZRQAfB2b53R29j1f8z_wAXV3n_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electronically Tunable Perfect Absorption in Graphene</title><source>American Chemical Society (ACS) Journals</source><creator>Kim, Seyoon ; Jang, Min Seok ; Brar, Victor W ; Mauser, Kelly W ; Kim, Laura ; Atwater, Harry A</creator><creatorcontrib>Kim, Seyoon ; Jang, Min Seok ; Brar, Victor W ; Mauser, Kelly W ; Kim, Laura ; Atwater, Harry A ; California Inst. of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>The demand for dynamically tunable light modulation in flat optics applications has grown in recent years. Graphene nanostructures have been extensively studied as means of creating large effective index tunability, motivated by theoretical predictions of the potential for unity absorption in resonantly excited graphene nanostructures. However, the poor radiative coupling to graphene plasmonic nanoresonators and low graphene carrier mobilities from imperfections in processed graphene samples have led to low modulation depths in experimental attempts at creating tunable absorption in graphene devices. Here we demonstrate electronically tunable perfect absorption in graphene, covering less than 10% of the surface area, by incorporating multiscale nanophotonic structures composed of a low-permittivity substrate and subwavelength noble metal plasmonic antennas to enhance the radiative coupling to deep subwavelength graphene nanoresonators. To design the structures, we devised a graphical method based on effective surface admittance, elucidating the origin of perfect absorption arising from critical coupling between radiation and graphene plasmonic modes. Experimental measurements reveal 96.9% absorption in the graphene plasmonic nanostructure at 1389 cm–1, with an on/off modulation efficiency of 95.9% in reflection.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.7b04393</identifier><identifier>PMID: 29320203</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science ; Physics ; Science &amp; Technology - Other Topics</subject><ispartof>Nano letters, 2018-02, Vol.18 (2), p.971-979</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a441t-faf196876ebee7ff3fc5bef28873efaceefcca56ecb411dcc2f08f6332431c6d3</citedby><cites>FETCH-LOGICAL-a441t-faf196876ebee7ff3fc5bef28873efaceefcca56ecb411dcc2f08f6332431c6d3</cites><orcidid>0000-0002-8040-9521 ; 0000-0002-5683-1925 ; 0000-0001-9435-0201 ; 0000000194350201 ; 0000000280409521 ; 0000000256831925</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.7b04393$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.7b04393$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29320203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1539392$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Seyoon</creatorcontrib><creatorcontrib>Jang, Min Seok</creatorcontrib><creatorcontrib>Brar, Victor W</creatorcontrib><creatorcontrib>Mauser, Kelly W</creatorcontrib><creatorcontrib>Kim, Laura</creatorcontrib><creatorcontrib>Atwater, Harry A</creatorcontrib><creatorcontrib>California Inst. of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>Electronically Tunable Perfect Absorption in Graphene</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The demand for dynamically tunable light modulation in flat optics applications has grown in recent years. Graphene nanostructures have been extensively studied as means of creating large effective index tunability, motivated by theoretical predictions of the potential for unity absorption in resonantly excited graphene nanostructures. However, the poor radiative coupling to graphene plasmonic nanoresonators and low graphene carrier mobilities from imperfections in processed graphene samples have led to low modulation depths in experimental attempts at creating tunable absorption in graphene devices. Here we demonstrate electronically tunable perfect absorption in graphene, covering less than 10% of the surface area, by incorporating multiscale nanophotonic structures composed of a low-permittivity substrate and subwavelength noble metal plasmonic antennas to enhance the radiative coupling to deep subwavelength graphene nanoresonators. To design the structures, we devised a graphical method based on effective surface admittance, elucidating the origin of perfect absorption arising from critical coupling between radiation and graphene plasmonic modes. Experimental measurements reveal 96.9% absorption in the graphene plasmonic nanostructure at 1389 cm–1, with an on/off modulation efficiency of 95.9% in reflection.</description><subject>Chemistry</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Science &amp; Technology - Other Topics</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kM1rAjEQxUNpqdb2Pyhl6X1tPvYrRxG1BaE92HPIjhNcWZMlWQ_-942seuxpBua9x7wfIa-MThnl7ENDmFptXYt9Py1rmgkp7siY5YKmhZT8_rZX2Yg8hbCnlEqR00cy4lJwyqkYk3zRIvTe2QZ0256SzdHqusXkB72Jh2RWB-e7vnE2aWyy8rrbocVn8mB0G_DlMifkd7nYzD_T9ffqaz5bpzrLWJ8abZgsqrLAGrE0RhjIazS8qkqBRgOiAdB5gVBnjG0BuKGVKYTgmWBQbMWEvA-5LvSNCtD0CDtw1sbXVGwnheRRlA0i8C4Ej0Z1vjlof1KMqjMqFVGpKyp1QRVtb4OtO9YH3N5MVzZRQAfB2b53R29j1f8z_wAXV3n_</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Kim, Seyoon</creator><creator>Jang, Min Seok</creator><creator>Brar, Victor W</creator><creator>Mauser, Kelly W</creator><creator>Kim, Laura</creator><creator>Atwater, Harry A</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8040-9521</orcidid><orcidid>https://orcid.org/0000-0002-5683-1925</orcidid><orcidid>https://orcid.org/0000-0001-9435-0201</orcidid><orcidid>https://orcid.org/0000000194350201</orcidid><orcidid>https://orcid.org/0000000280409521</orcidid><orcidid>https://orcid.org/0000000256831925</orcidid></search><sort><creationdate>20180214</creationdate><title>Electronically Tunable Perfect Absorption in Graphene</title><author>Kim, Seyoon ; Jang, Min Seok ; Brar, Victor W ; Mauser, Kelly W ; Kim, Laura ; Atwater, Harry A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a441t-faf196876ebee7ff3fc5bef28873efaceefcca56ecb411dcc2f08f6332431c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Science &amp; Technology - Other Topics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Seyoon</creatorcontrib><creatorcontrib>Jang, Min Seok</creatorcontrib><creatorcontrib>Brar, Victor W</creatorcontrib><creatorcontrib>Mauser, Kelly W</creatorcontrib><creatorcontrib>Kim, Laura</creatorcontrib><creatorcontrib>Atwater, Harry A</creatorcontrib><creatorcontrib>California Inst. of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Seyoon</au><au>Jang, Min Seok</au><au>Brar, Victor W</au><au>Mauser, Kelly W</au><au>Kim, Laura</au><au>Atwater, Harry A</au><aucorp>California Inst. of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronically Tunable Perfect Absorption in Graphene</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-02-14</date><risdate>2018</risdate><volume>18</volume><issue>2</issue><spage>971</spage><epage>979</epage><pages>971-979</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The demand for dynamically tunable light modulation in flat optics applications has grown in recent years. Graphene nanostructures have been extensively studied as means of creating large effective index tunability, motivated by theoretical predictions of the potential for unity absorption in resonantly excited graphene nanostructures. However, the poor radiative coupling to graphene plasmonic nanoresonators and low graphene carrier mobilities from imperfections in processed graphene samples have led to low modulation depths in experimental attempts at creating tunable absorption in graphene devices. Here we demonstrate electronically tunable perfect absorption in graphene, covering less than 10% of the surface area, by incorporating multiscale nanophotonic structures composed of a low-permittivity substrate and subwavelength noble metal plasmonic antennas to enhance the radiative coupling to deep subwavelength graphene nanoresonators. To design the structures, we devised a graphical method based on effective surface admittance, elucidating the origin of perfect absorption arising from critical coupling between radiation and graphene plasmonic modes. Experimental measurements reveal 96.9% absorption in the graphene plasmonic nanostructure at 1389 cm–1, with an on/off modulation efficiency of 95.9% in reflection.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29320203</pmid><doi>10.1021/acs.nanolett.7b04393</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8040-9521</orcidid><orcidid>https://orcid.org/0000-0002-5683-1925</orcidid><orcidid>https://orcid.org/0000-0001-9435-0201</orcidid><orcidid>https://orcid.org/0000000194350201</orcidid><orcidid>https://orcid.org/0000000280409521</orcidid><orcidid>https://orcid.org/0000000256831925</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2018-02, Vol.18 (2), p.971-979
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1539392
source American Chemical Society (ACS) Journals
subjects Chemistry
Materials Science
Physics
Science & Technology - Other Topics
title Electronically Tunable Perfect Absorption in Graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronically%20Tunable%20Perfect%20Absorption%20in%20Graphene&rft.jtitle=Nano%20letters&rft.au=Kim,%20Seyoon&rft.aucorp=California%20Inst.%20of%20Technology%20(CalTech),%20Pasadena,%20CA%20(United%20States)&rft.date=2018-02-14&rft.volume=18&rft.issue=2&rft.spage=971&rft.epage=979&rft.pages=971-979&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.7b04393&rft_dat=%3Cacs_osti_%3Eb34889558%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/29320203&rfr_iscdi=true