On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing

•Stress-relieved AM 316L SS has an anisotropic non-equilibrium microstructure and preferred SCC path in the build direction.•Fully-annealed AM 316L shows equiaxed coarse grains and similar SCC growth rate as wrought material.•Retained unrecrystallized grains in the high-temperature annealed AM part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2017-11, Vol.128 (C), p.140-153
Hauptverfasser: Lou, Xiaoyuan, Song, Miao, Emigh, Paul W., Othon, Michelle A., Andresen, Peter L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 153
container_issue C
container_start_page 140
container_title Corrosion science
container_volume 128
creator Lou, Xiaoyuan
Song, Miao
Emigh, Paul W.
Othon, Michelle A.
Andresen, Peter L.
description •Stress-relieved AM 316L SS has an anisotropic non-equilibrium microstructure and preferred SCC path in the build direction.•Fully-annealed AM 316L shows equiaxed coarse grains and similar SCC growth rate as wrought material.•Retained unrecrystallized grains in the high-temperature annealed AM part poses minimal impact on the SCC crack growth.•Increasing porosity and pore size in AM 316L stainless steel may enhance its SCC growth rate.•For nuclear applications, high temperature recrystallization annealing is necessary for AM stainless steel part. This paper reports a comprehensive study of the stress corrosion crack growth behaviour of laser additively-manufactured (AM) 316L stainless steel in high temperature water. A wide range of parameters and their effects were evaluated, including microstructure, heat treatment, stress intensity factor, cold work, crack orientation, oxidizing vs. reducing conditions, and porosity. Stress-relieved material exhibits anisotropic microstructure and preferred crack path along material’s build direction. With high-temperature annealing, the material recrystallizes to equiaxed structure and behaves like wrought material. The retained unrecrystallized grains in an annealed AM part may not affect the cracking. Increased porosity may enhance the crack growth rate.
doi_str_mv 10.1016/j.corsci.2017.09.017
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1538195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X17303256</els_id><sourcerecordid>1971734147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-8e9f697e03fa2bac7dba18691293911f57dbd10ca39bbe4fb52761bffd5154b3</originalsourceid><addsrcrecordid>eNp9kc2OEzEQhC3ESoSFN-BgwXkGd-bXFyS0gl2kSHvZAzfLP-2MQ2IH25Non2RfFw_DmVNJ1tfl7ipCPgCrgUH_-VDrEJN29ZbBUDNeF3lFNjAOvGIt71-TDWPAKt6MP9-QtykdGGOFZRvy8uhpnpCmHDElWnxiSC54qqPUv-g-hmueqMJJXlyYI3WeTm4_0YynM0aZ54j0KjNGGixtoN8VJ-n8cTFLGfFIT9IgVc_0KFOhzuFqiig01M5_P5LGuOwuWEA_W6mLpfP7d-TGymPC9__0ljx9__Z091DtHu9_3H3dVbpt21yNyG3PB2SNlVsl9WCUhLHnsOUNB7BdeTDAtGy4Utha1W2HHpS1poOuVc0t-bjahpSdKBFm1JMO3qPOArpmBN4V6NMKnWP4PWPK4lCi8GUtAXyAoWmhHQrVrpQuCaaIVpyjO8n4LICJpSZxEGtNYqlJMC6KlLEv6xiWKy8O47IFeo3GxWUJE9z_Df4AlNSgbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1971734147</pqid></control><display><type>article</type><title>On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lou, Xiaoyuan ; Song, Miao ; Emigh, Paul W. ; Othon, Michelle A. ; Andresen, Peter L.</creator><creatorcontrib>Lou, Xiaoyuan ; Song, Miao ; Emigh, Paul W. ; Othon, Michelle A. ; Andresen, Peter L. ; General Electric Company, Boston, MA (United States)</creatorcontrib><description>•Stress-relieved AM 316L SS has an anisotropic non-equilibrium microstructure and preferred SCC path in the build direction.•Fully-annealed AM 316L shows equiaxed coarse grains and similar SCC growth rate as wrought material.•Retained unrecrystallized grains in the high-temperature annealed AM part poses minimal impact on the SCC crack growth.•Increasing porosity and pore size in AM 316L stainless steel may enhance its SCC growth rate.•For nuclear applications, high temperature recrystallization annealing is necessary for AM stainless steel part. This paper reports a comprehensive study of the stress corrosion crack growth behaviour of laser additively-manufactured (AM) 316L stainless steel in high temperature water. A wide range of parameters and their effects were evaluated, including microstructure, heat treatment, stress intensity factor, cold work, crack orientation, oxidizing vs. reducing conditions, and porosity. Stress-relieved material exhibits anisotropic microstructure and preferred crack path along material’s build direction. With high-temperature annealing, the material recrystallizes to equiaxed structure and behaves like wrought material. The retained unrecrystallized grains in an annealed AM part may not affect the cracking. Increased porosity may enhance the crack growth rate.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2017.09.017</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Additive manufacturing ; Annealing ; Austenitic 316L stainless steel ; Austenitic stainless steels ; Boiling water reactor ; Cold working ; Construction materials ; Corrosion tests ; Crack growth rate ; Crack propagation ; Equiaxed structure ; Heat treatment ; High temperature ; Laser powder bed fusion ; Materials Science ; Metallurgy &amp; Metallurgical Engineering ; Microstructure ; Oxidation ; Porosity ; Recrystallization ; Stainless steel ; Stress corrosion cracking ; Stress intensity factors ; Studies</subject><ispartof>Corrosion science, 2017-11, Vol.128 (C), p.140-153</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-8e9f697e03fa2bac7dba18691293911f57dbd10ca39bbe4fb52761bffd5154b3</citedby><cites>FETCH-LOGICAL-c444t-8e9f697e03fa2bac7dba18691293911f57dbd10ca39bbe4fb52761bffd5154b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.corsci.2017.09.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1538195$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lou, Xiaoyuan</creatorcontrib><creatorcontrib>Song, Miao</creatorcontrib><creatorcontrib>Emigh, Paul W.</creatorcontrib><creatorcontrib>Othon, Michelle A.</creatorcontrib><creatorcontrib>Andresen, Peter L.</creatorcontrib><creatorcontrib>General Electric Company, Boston, MA (United States)</creatorcontrib><title>On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing</title><title>Corrosion science</title><description>•Stress-relieved AM 316L SS has an anisotropic non-equilibrium microstructure and preferred SCC path in the build direction.•Fully-annealed AM 316L shows equiaxed coarse grains and similar SCC growth rate as wrought material.•Retained unrecrystallized grains in the high-temperature annealed AM part poses minimal impact on the SCC crack growth.•Increasing porosity and pore size in AM 316L stainless steel may enhance its SCC growth rate.•For nuclear applications, high temperature recrystallization annealing is necessary for AM stainless steel part. This paper reports a comprehensive study of the stress corrosion crack growth behaviour of laser additively-manufactured (AM) 316L stainless steel in high temperature water. A wide range of parameters and their effects were evaluated, including microstructure, heat treatment, stress intensity factor, cold work, crack orientation, oxidizing vs. reducing conditions, and porosity. Stress-relieved material exhibits anisotropic microstructure and preferred crack path along material’s build direction. With high-temperature annealing, the material recrystallizes to equiaxed structure and behaves like wrought material. The retained unrecrystallized grains in an annealed AM part may not affect the cracking. Increased porosity may enhance the crack growth rate.</description><subject>Additive manufacturing</subject><subject>Annealing</subject><subject>Austenitic 316L stainless steel</subject><subject>Austenitic stainless steels</subject><subject>Boiling water reactor</subject><subject>Cold working</subject><subject>Construction materials</subject><subject>Corrosion tests</subject><subject>Crack growth rate</subject><subject>Crack propagation</subject><subject>Equiaxed structure</subject><subject>Heat treatment</subject><subject>High temperature</subject><subject>Laser powder bed fusion</subject><subject>Materials Science</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>Microstructure</subject><subject>Oxidation</subject><subject>Porosity</subject><subject>Recrystallization</subject><subject>Stainless steel</subject><subject>Stress corrosion cracking</subject><subject>Stress intensity factors</subject><subject>Studies</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc2OEzEQhC3ESoSFN-BgwXkGd-bXFyS0gl2kSHvZAzfLP-2MQ2IH25Non2RfFw_DmVNJ1tfl7ipCPgCrgUH_-VDrEJN29ZbBUDNeF3lFNjAOvGIt71-TDWPAKt6MP9-QtykdGGOFZRvy8uhpnpCmHDElWnxiSC54qqPUv-g-hmueqMJJXlyYI3WeTm4_0YynM0aZ54j0KjNGGixtoN8VJ-n8cTFLGfFIT9IgVc_0KFOhzuFqiig01M5_P5LGuOwuWEA_W6mLpfP7d-TGymPC9__0ljx9__Z091DtHu9_3H3dVbpt21yNyG3PB2SNlVsl9WCUhLHnsOUNB7BdeTDAtGy4Utha1W2HHpS1poOuVc0t-bjahpSdKBFm1JMO3qPOArpmBN4V6NMKnWP4PWPK4lCi8GUtAXyAoWmhHQrVrpQuCaaIVpyjO8n4LICJpSZxEGtNYqlJMC6KlLEv6xiWKy8O47IFeo3GxWUJE9z_Df4AlNSgbQ</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Lou, Xiaoyuan</creator><creator>Song, Miao</creator><creator>Emigh, Paul W.</creator><creator>Othon, Michelle A.</creator><creator>Andresen, Peter L.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20171101</creationdate><title>On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing</title><author>Lou, Xiaoyuan ; Song, Miao ; Emigh, Paul W. ; Othon, Michelle A. ; Andresen, Peter L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-8e9f697e03fa2bac7dba18691293911f57dbd10ca39bbe4fb52761bffd5154b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Additive manufacturing</topic><topic>Annealing</topic><topic>Austenitic 316L stainless steel</topic><topic>Austenitic stainless steels</topic><topic>Boiling water reactor</topic><topic>Cold working</topic><topic>Construction materials</topic><topic>Corrosion tests</topic><topic>Crack growth rate</topic><topic>Crack propagation</topic><topic>Equiaxed structure</topic><topic>Heat treatment</topic><topic>High temperature</topic><topic>Laser powder bed fusion</topic><topic>Materials Science</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>Microstructure</topic><topic>Oxidation</topic><topic>Porosity</topic><topic>Recrystallization</topic><topic>Stainless steel</topic><topic>Stress corrosion cracking</topic><topic>Stress intensity factors</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Xiaoyuan</creatorcontrib><creatorcontrib>Song, Miao</creatorcontrib><creatorcontrib>Emigh, Paul W.</creatorcontrib><creatorcontrib>Othon, Michelle A.</creatorcontrib><creatorcontrib>Andresen, Peter L.</creatorcontrib><creatorcontrib>General Electric Company, Boston, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Xiaoyuan</au><au>Song, Miao</au><au>Emigh, Paul W.</au><au>Othon, Michelle A.</au><au>Andresen, Peter L.</au><aucorp>General Electric Company, Boston, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing</atitle><jtitle>Corrosion science</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>128</volume><issue>C</issue><spage>140</spage><epage>153</epage><pages>140-153</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>•Stress-relieved AM 316L SS has an anisotropic non-equilibrium microstructure and preferred SCC path in the build direction.•Fully-annealed AM 316L shows equiaxed coarse grains and similar SCC growth rate as wrought material.•Retained unrecrystallized grains in the high-temperature annealed AM part poses minimal impact on the SCC crack growth.•Increasing porosity and pore size in AM 316L stainless steel may enhance its SCC growth rate.•For nuclear applications, high temperature recrystallization annealing is necessary for AM stainless steel part. This paper reports a comprehensive study of the stress corrosion crack growth behaviour of laser additively-manufactured (AM) 316L stainless steel in high temperature water. A wide range of parameters and their effects were evaluated, including microstructure, heat treatment, stress intensity factor, cold work, crack orientation, oxidizing vs. reducing conditions, and porosity. Stress-relieved material exhibits anisotropic microstructure and preferred crack path along material’s build direction. With high-temperature annealing, the material recrystallizes to equiaxed structure and behaves like wrought material. The retained unrecrystallized grains in an annealed AM part may not affect the cracking. Increased porosity may enhance the crack growth rate.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2017.09.017</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0010-938X
ispartof Corrosion science, 2017-11, Vol.128 (C), p.140-153
issn 0010-938X
1879-0496
language eng
recordid cdi_osti_scitechconnect_1538195
source Access via ScienceDirect (Elsevier)
subjects Additive manufacturing
Annealing
Austenitic 316L stainless steel
Austenitic stainless steels
Boiling water reactor
Cold working
Construction materials
Corrosion tests
Crack growth rate
Crack propagation
Equiaxed structure
Heat treatment
High temperature
Laser powder bed fusion
Materials Science
Metallurgy & Metallurgical Engineering
Microstructure
Oxidation
Porosity
Recrystallization
Stainless steel
Stress corrosion cracking
Stress intensity factors
Studies
title On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A47%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20stress%20corrosion%20crack%20growth%20behaviour%20in%20high%20temperature%20water%20of%20316L%20stainless%20steel%20made%20by%20laser%20powder%20bed%20fusion%20additive%20manufacturing&rft.jtitle=Corrosion%20science&rft.au=Lou,%20Xiaoyuan&rft.aucorp=General%20Electric%20Company,%20Boston,%20MA%20(United%20States)&rft.date=2017-11-01&rft.volume=128&rft.issue=C&rft.spage=140&rft.epage=153&rft.pages=140-153&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2017.09.017&rft_dat=%3Cproquest_osti_%3E1971734147%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1971734147&rft_id=info:pmid/&rft_els_id=S0010938X17303256&rfr_iscdi=true