Comparison of Single-Phase and Two-Phase Composite Thermal Barrier Coatings with Equal Total Rare-Earth Content
Rare-earth zirconates have been the focus of advanced thermal barrier coating research for nearly two decades; however, their lack of toughness prevents a wide-scale adoption due to lack of erosion and thermal cyclic durability. There are generally two methods of improving toughness: intrinsic modif...
Gespeichert in:
Veröffentlicht in: | Journal of thermal spray technology 2018-04, Vol.27 (4), p.556-565 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 565 |
---|---|
container_issue | 4 |
container_start_page | 556 |
container_title | Journal of thermal spray technology |
container_volume | 27 |
creator | Rai, Amarendra K. Schmitt, Michael P. Dorfman, Mitchell R. Zhu, Dongming Wolfe, Douglas E. |
description | Rare-earth zirconates have been the focus of advanced thermal barrier coating research for nearly two decades; however, their lack of toughness prevents a wide-scale adoption due to lack of erosion and thermal cyclic durability. There are generally two methods of improving toughness: intrinsic modification of the coating chemistry and extrinsic modification of the coating structure. This study compares the efficacy of these two methods for a similar overall rare-earth content via the air plasma spray process. The extrinsically toughened coatings were comprised of a two-phase composite containing 30 wt.% Gd
2
Zr
2
O
7
(GZO) combined with 70 wt.% of a tougher t′ low-k material (ZrO
2
-2Y
2
O
3
-1Gd
2
O
3
-1Yb
2
O
3
; mol.%), while a single-phase fluorite with the overall rare-earth content equivalent to the two-phase composite (13 mol.% rare-earth) was utilized to explore intrinsically toughened concept. The coatings were then characterized via x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy, and their performance was evaluated via erosion, thermal conductivity, thermal annealing (500 h), and thermal cycling. It was shown that the extrinsic method provided an improved erosion and thermal conductivity response over the single phase, but at the expense of high-temperature stability and cyclic life. |
doi_str_mv | 10.1007/s11666-018-0713-3 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1537829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11666_018_0713_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-87e8f5cbaffd020eb85e453e55ba23bb21d3a62cbbc146fe886b6dc9465839ab3</originalsourceid><addsrcrecordid>eNp9UF1PwyAUJUYT5_QH-EZ8R6EUSh-1mR_JEo3WZwKUrl02mMCy-O9l6Z59uV_nnJt7DwC3BN8TjKuHSAjnHGEiEK4IRfQMzAgrS0Qw4ee5xqxGNaf4ElzFuMYYM16wGfCN3-5UGKN30Pfwa3SrjUUfg4oWKtfB9uBP3ZHo45gsbAcbtmoDn1QIow0ZUSnrIjyMaYCLn33GWp9y_FTBooUKedx4l6xL1-CiV5tob055Dr6fF23zipbvL2_N4xIZSlhCorKiZ0arvu9wga0WzJaMWsa0KqjWBemo4oXR2pCS91YIrnln6pIzQWul6RzcTXt9TKOMJt9tBuOdsyZJwmglijqTyEQywccYbC93Ydyq8CsJlkdb5WSrzLbKo62SZk0xaWLmupUNcu33weVf_hH9Ad5Ue7Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of Single-Phase and Two-Phase Composite Thermal Barrier Coatings with Equal Total Rare-Earth Content</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rai, Amarendra K. ; Schmitt, Michael P. ; Dorfman, Mitchell R. ; Zhu, Dongming ; Wolfe, Douglas E.</creator><creatorcontrib>Rai, Amarendra K. ; Schmitt, Michael P. ; Dorfman, Mitchell R. ; Zhu, Dongming ; Wolfe, Douglas E. ; University Corporation for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><description>Rare-earth zirconates have been the focus of advanced thermal barrier coating research for nearly two decades; however, their lack of toughness prevents a wide-scale adoption due to lack of erosion and thermal cyclic durability. There are generally two methods of improving toughness: intrinsic modification of the coating chemistry and extrinsic modification of the coating structure. This study compares the efficacy of these two methods for a similar overall rare-earth content via the air plasma spray process. The extrinsically toughened coatings were comprised of a two-phase composite containing 30 wt.% Gd
2
Zr
2
O
7
(GZO) combined with 70 wt.% of a tougher t′ low-k material (ZrO
2
-2Y
2
O
3
-1Gd
2
O
3
-1Yb
2
O
3
; mol.%), while a single-phase fluorite with the overall rare-earth content equivalent to the two-phase composite (13 mol.% rare-earth) was utilized to explore intrinsically toughened concept. The coatings were then characterized via x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy, and their performance was evaluated via erosion, thermal conductivity, thermal annealing (500 h), and thermal cycling. It was shown that the extrinsic method provided an improved erosion and thermal conductivity response over the single phase, but at the expense of high-temperature stability and cyclic life.</description><identifier>ISSN: 1059-9630</identifier><identifier>EISSN: 1544-1016</identifier><identifier>DOI: 10.1007/s11666-018-0713-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Machines ; Manufacturing ; Materials Science ; Peer Reviewed ; Processes ; Surfaces and Interfaces ; Thin Films ; Tribology</subject><ispartof>Journal of thermal spray technology, 2018-04, Vol.27 (4), p.556-565</ispartof><rights>ASM International 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-87e8f5cbaffd020eb85e453e55ba23bb21d3a62cbbc146fe886b6dc9465839ab3</citedby><cites>FETCH-LOGICAL-c315t-87e8f5cbaffd020eb85e453e55ba23bb21d3a62cbbc146fe886b6dc9465839ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11666-018-0713-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11666-018-0713-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1537829$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rai, Amarendra K.</creatorcontrib><creatorcontrib>Schmitt, Michael P.</creatorcontrib><creatorcontrib>Dorfman, Mitchell R.</creatorcontrib><creatorcontrib>Zhu, Dongming</creatorcontrib><creatorcontrib>Wolfe, Douglas E.</creatorcontrib><creatorcontrib>University Corporation for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><title>Comparison of Single-Phase and Two-Phase Composite Thermal Barrier Coatings with Equal Total Rare-Earth Content</title><title>Journal of thermal spray technology</title><addtitle>J Therm Spray Tech</addtitle><description>Rare-earth zirconates have been the focus of advanced thermal barrier coating research for nearly two decades; however, their lack of toughness prevents a wide-scale adoption due to lack of erosion and thermal cyclic durability. There are generally two methods of improving toughness: intrinsic modification of the coating chemistry and extrinsic modification of the coating structure. This study compares the efficacy of these two methods for a similar overall rare-earth content via the air plasma spray process. The extrinsically toughened coatings were comprised of a two-phase composite containing 30 wt.% Gd
2
Zr
2
O
7
(GZO) combined with 70 wt.% of a tougher t′ low-k material (ZrO
2
-2Y
2
O
3
-1Gd
2
O
3
-1Yb
2
O
3
; mol.%), while a single-phase fluorite with the overall rare-earth content equivalent to the two-phase composite (13 mol.% rare-earth) was utilized to explore intrinsically toughened concept. The coatings were then characterized via x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy, and their performance was evaluated via erosion, thermal conductivity, thermal annealing (500 h), and thermal cycling. It was shown that the extrinsic method provided an improved erosion and thermal conductivity response over the single phase, but at the expense of high-temperature stability and cyclic life.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Peer Reviewed</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><issn>1059-9630</issn><issn>1544-1016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UF1PwyAUJUYT5_QH-EZ8R6EUSh-1mR_JEo3WZwKUrl02mMCy-O9l6Z59uV_nnJt7DwC3BN8TjKuHSAjnHGEiEK4IRfQMzAgrS0Qw4ee5xqxGNaf4ElzFuMYYM16wGfCN3-5UGKN30Pfwa3SrjUUfg4oWKtfB9uBP3ZHo45gsbAcbtmoDn1QIow0ZUSnrIjyMaYCLn33GWp9y_FTBooUKedx4l6xL1-CiV5tob055Dr6fF23zipbvL2_N4xIZSlhCorKiZ0arvu9wga0WzJaMWsa0KqjWBemo4oXR2pCS91YIrnln6pIzQWul6RzcTXt9TKOMJt9tBuOdsyZJwmglijqTyEQywccYbC93Ydyq8CsJlkdb5WSrzLbKo62SZk0xaWLmupUNcu33weVf_hH9Ad5Ue7Q</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Rai, Amarendra K.</creator><creator>Schmitt, Michael P.</creator><creator>Dorfman, Mitchell R.</creator><creator>Zhu, Dongming</creator><creator>Wolfe, Douglas E.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180401</creationdate><title>Comparison of Single-Phase and Two-Phase Composite Thermal Barrier Coatings with Equal Total Rare-Earth Content</title><author>Rai, Amarendra K. ; Schmitt, Michael P. ; Dorfman, Mitchell R. ; Zhu, Dongming ; Wolfe, Douglas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-87e8f5cbaffd020eb85e453e55ba23bb21d3a62cbbc146fe886b6dc9465839ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Peer Reviewed</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rai, Amarendra K.</creatorcontrib><creatorcontrib>Schmitt, Michael P.</creatorcontrib><creatorcontrib>Dorfman, Mitchell R.</creatorcontrib><creatorcontrib>Zhu, Dongming</creatorcontrib><creatorcontrib>Wolfe, Douglas E.</creatorcontrib><creatorcontrib>University Corporation for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of thermal spray technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rai, Amarendra K.</au><au>Schmitt, Michael P.</au><au>Dorfman, Mitchell R.</au><au>Zhu, Dongming</au><au>Wolfe, Douglas E.</au><aucorp>University Corporation for Atmospheric Research, Boulder, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of Single-Phase and Two-Phase Composite Thermal Barrier Coatings with Equal Total Rare-Earth Content</atitle><jtitle>Journal of thermal spray technology</jtitle><stitle>J Therm Spray Tech</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>27</volume><issue>4</issue><spage>556</spage><epage>565</epage><pages>556-565</pages><issn>1059-9630</issn><eissn>1544-1016</eissn><abstract>Rare-earth zirconates have been the focus of advanced thermal barrier coating research for nearly two decades; however, their lack of toughness prevents a wide-scale adoption due to lack of erosion and thermal cyclic durability. There are generally two methods of improving toughness: intrinsic modification of the coating chemistry and extrinsic modification of the coating structure. This study compares the efficacy of these two methods for a similar overall rare-earth content via the air plasma spray process. The extrinsically toughened coatings were comprised of a two-phase composite containing 30 wt.% Gd
2
Zr
2
O
7
(GZO) combined with 70 wt.% of a tougher t′ low-k material (ZrO
2
-2Y
2
O
3
-1Gd
2
O
3
-1Yb
2
O
3
; mol.%), while a single-phase fluorite with the overall rare-earth content equivalent to the two-phase composite (13 mol.% rare-earth) was utilized to explore intrinsically toughened concept. The coatings were then characterized via x-ray diffraction, energy-dispersive spectroscopy, and scanning electron microscopy, and their performance was evaluated via erosion, thermal conductivity, thermal annealing (500 h), and thermal cycling. It was shown that the extrinsic method provided an improved erosion and thermal conductivity response over the single phase, but at the expense of high-temperature stability and cyclic life.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11666-018-0713-3</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-9630 |
ispartof | Journal of thermal spray technology, 2018-04, Vol.27 (4), p.556-565 |
issn | 1059-9630 1544-1016 |
language | eng |
recordid | cdi_osti_scitechconnect_1537829 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Machines Manufacturing Materials Science Peer Reviewed Processes Surfaces and Interfaces Thin Films Tribology |
title | Comparison of Single-Phase and Two-Phase Composite Thermal Barrier Coatings with Equal Total Rare-Earth Content |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20Single-Phase%20and%20Two-Phase%20Composite%20Thermal%20Barrier%20Coatings%20with%20Equal%20Total%20Rare-Earth%20Content&rft.jtitle=Journal%20of%20thermal%20spray%20technology&rft.au=Rai,%20Amarendra%20K.&rft.aucorp=University%20Corporation%20for%20Atmospheric%20Research,%20Boulder,%20CO%20(United%20States)&rft.date=2018-04-01&rft.volume=27&rft.issue=4&rft.spage=556&rft.epage=565&rft.pages=556-565&rft.issn=1059-9630&rft.eissn=1544-1016&rft_id=info:doi/10.1007/s11666-018-0713-3&rft_dat=%3Ccrossref_osti_%3E10_1007_s11666_018_0713_3%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |