Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media
The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient θ , which represents the fraction of populations being reflected by the solid phase) in the evolution equ...
Gespeichert in:
Veröffentlicht in: | Journal of statistical physics 2018-05, Vol.171 (3), p.493-520 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 520 |
---|---|
container_issue | 3 |
container_start_page | 493 |
container_title | Journal of statistical physics |
container_volume | 171 |
creator | Chen, Chen Li, Like Mei, Renwei Klausner, James F. |
description | The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient
θ
, which represents the fraction of populations being reflected by the solid phase) in the evolution equation to account for the linear drag of the medium. Several particular GLBE schemes have been proposed in the literature and these schemes are very easy to implement; but there exists uncertainty about the need for redefining the macroscopic velocity as there has been no systematic analysis to recover the Brinkman equation from the various GLBE schemes. Rigorous Chapman–Enskog analyses are carried out to show that the momentum equation recovered from these schemes can satisfy Brinkman equation to second order in
ϵ
only if
θ
=
O
ϵ
in which
ϵ
is the ratio of the lattice spacing to the characteristic length of physical dimension. The need for redefining macroscopic velocity is shown to be scheme-dependent. When a body force is encountered such as the gravitational force or that caused by a pressure gradient, different forms of forcing redefinitions are required for each GLBE scheme. |
doi_str_mv | 10.1007/s10955-018-2005-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1537769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022827214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-79bec83ef6f78a6ffc8fbaf68fb3fc4be17c1bcdb3b38c9154edd7ad6e8a0a8b3</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqXwAWwWzAE7TmJnLFVbkIpggNlyHLtJSe3WdoTKxD_wh3wJroLExPLe8M690jsAXGJ0gxGitx6jMs8ThFmSIpQn-AiMcE7TpCwwOQYjhNI0ySjOT8GZ92uEUMnKfAT0tBHbjTDfn18z49_sCk6M6PZeeWgNDI2CCyf2cClCaKWCd7YLHxE3cLbrRWgj86hCY2uorYPzrm_rOO07bA18ts72Pt7rVpyDEy06ry5-9xi8zmcv0_tk-bR4mE6WiSQZCQktKyUZUbrQlIlCa8l0JXQRJ9EyqxSmEleyrkhFmCxxnqm6pqIuFBNIsIqMwdXQa31ouZdtULKR1hglA8c5obQoI3Q9QFtnd73yga9t7-LbnqdRE0tpirNI4YGSznrvlOZb126E23OM-ME5H5zz6JwfnHMcM-mQ8ZE1K-X-mv8P_QBnr4ZU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022827214</pqid></control><display><type>article</type><title>Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media</title><source>Springer Online Journals Complete</source><creator>Chen, Chen ; Li, Like ; Mei, Renwei ; Klausner, James F.</creator><creatorcontrib>Chen, Chen ; Li, Like ; Mei, Renwei ; Klausner, James F. ; Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><description>The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient
θ
, which represents the fraction of populations being reflected by the solid phase) in the evolution equation to account for the linear drag of the medium. Several particular GLBE schemes have been proposed in the literature and these schemes are very easy to implement; but there exists uncertainty about the need for redefining the macroscopic velocity as there has been no systematic analysis to recover the Brinkman equation from the various GLBE schemes. Rigorous Chapman–Enskog analyses are carried out to show that the momentum equation recovered from these schemes can satisfy Brinkman equation to second order in
ϵ
only if
θ
=
O
ϵ
in which
ϵ
is the ratio of the lattice spacing to the characteristic length of physical dimension. The need for redefining macroscopic velocity is shown to be scheme-dependent. When a body force is encountered such as the gravitational force or that caused by a pressure gradient, different forms of forcing redefinitions are required for each GLBE scheme.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-018-2005-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boltzmann transport equation ; Fluid dynamics ; Fluid flow ; Mathematical analysis ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Populations ; Porous media ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2018-05, Vol.171 (3), p.493-520</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-79bec83ef6f78a6ffc8fbaf68fb3fc4be17c1bcdb3b38c9154edd7ad6e8a0a8b3</citedby><cites>FETCH-LOGICAL-c343t-79bec83ef6f78a6ffc8fbaf68fb3fc4be17c1bcdb3b38c9154edd7ad6e8a0a8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-018-2005-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-018-2005-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1537769$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Li, Like</creatorcontrib><creatorcontrib>Mei, Renwei</creatorcontrib><creatorcontrib>Klausner, James F.</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><title>Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient
θ
, which represents the fraction of populations being reflected by the solid phase) in the evolution equation to account for the linear drag of the medium. Several particular GLBE schemes have been proposed in the literature and these schemes are very easy to implement; but there exists uncertainty about the need for redefining the macroscopic velocity as there has been no systematic analysis to recover the Brinkman equation from the various GLBE schemes. Rigorous Chapman–Enskog analyses are carried out to show that the momentum equation recovered from these schemes can satisfy Brinkman equation to second order in
ϵ
only if
θ
=
O
ϵ
in which
ϵ
is the ratio of the lattice spacing to the characteristic length of physical dimension. The need for redefining macroscopic velocity is shown to be scheme-dependent. When a body force is encountered such as the gravitational force or that caused by a pressure gradient, different forms of forcing redefinitions are required for each GLBE scheme.</description><subject>Boltzmann transport equation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Populations</subject><subject>Porous media</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqXwAWwWzAE7TmJnLFVbkIpggNlyHLtJSe3WdoTKxD_wh3wJroLExPLe8M690jsAXGJ0gxGitx6jMs8ThFmSIpQn-AiMcE7TpCwwOQYjhNI0ySjOT8GZ92uEUMnKfAT0tBHbjTDfn18z49_sCk6M6PZeeWgNDI2CCyf2cClCaKWCd7YLHxE3cLbrRWgj86hCY2uorYPzrm_rOO07bA18ts72Pt7rVpyDEy06ry5-9xi8zmcv0_tk-bR4mE6WiSQZCQktKyUZUbrQlIlCa8l0JXQRJ9EyqxSmEleyrkhFmCxxnqm6pqIuFBNIsIqMwdXQa31ouZdtULKR1hglA8c5obQoI3Q9QFtnd73yga9t7-LbnqdRE0tpirNI4YGSznrvlOZb126E23OM-ME5H5zz6JwfnHMcM-mQ8ZE1K-X-mv8P_QBnr4ZU</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Chen, Chen</creator><creator>Li, Like</creator><creator>Mei, Renwei</creator><creator>Klausner, James F.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180501</creationdate><title>Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media</title><author>Chen, Chen ; Li, Like ; Mei, Renwei ; Klausner, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-79bec83ef6f78a6ffc8fbaf68fb3fc4be17c1bcdb3b38c9154edd7ad6e8a0a8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boltzmann transport equation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Populations</topic><topic>Porous media</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Li, Like</creatorcontrib><creatorcontrib>Mei, Renwei</creatorcontrib><creatorcontrib>Klausner, James F.</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chen</au><au>Li, Like</au><au>Mei, Renwei</au><au>Klausner, James F.</au><aucorp>Univ. of Florida, Gainesville, FL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>171</volume><issue>3</issue><spage>493</spage><epage>520</epage><pages>493-520</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient
θ
, which represents the fraction of populations being reflected by the solid phase) in the evolution equation to account for the linear drag of the medium. Several particular GLBE schemes have been proposed in the literature and these schemes are very easy to implement; but there exists uncertainty about the need for redefining the macroscopic velocity as there has been no systematic analysis to recover the Brinkman equation from the various GLBE schemes. Rigorous Chapman–Enskog analyses are carried out to show that the momentum equation recovered from these schemes can satisfy Brinkman equation to second order in
ϵ
only if
θ
=
O
ϵ
in which
ϵ
is the ratio of the lattice spacing to the characteristic length of physical dimension. The need for redefining macroscopic velocity is shown to be scheme-dependent. When a body force is encountered such as the gravitational force or that caused by a pressure gradient, different forms of forcing redefinitions are required for each GLBE scheme.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-018-2005-1</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4715 |
ispartof | Journal of statistical physics, 2018-05, Vol.171 (3), p.493-520 |
issn | 0022-4715 1572-9613 |
language | eng |
recordid | cdi_osti_scitechconnect_1537769 |
source | Springer Online Journals Complete |
subjects | Boltzmann transport equation Fluid dynamics Fluid flow Mathematical analysis Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Populations Porous media Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
title | Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chapman%E2%80%93Enskog%20Analyses%20on%20the%20Gray%20Lattice%20Boltzmann%20Equation%20Method%20for%20Fluid%20Flow%20in%20Porous%20Media&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Chen,%20Chen&rft.aucorp=Univ.%20of%20Florida,%20Gainesville,%20FL%20(United%20States)&rft.date=2018-05-01&rft.volume=171&rft.issue=3&rft.spage=493&rft.epage=520&rft.pages=493-520&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-018-2005-1&rft_dat=%3Cproquest_osti_%3E2022827214%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022827214&rft_id=info:pmid/&rfr_iscdi=true |