Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media

The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient θ , which represents the fraction of populations being reflected by the solid phase) in the evolution equ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2018-05, Vol.171 (3), p.493-520
Hauptverfasser: Chen, Chen, Li, Like, Mei, Renwei, Klausner, James F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 520
container_issue 3
container_start_page 493
container_title Journal of statistical physics
container_volume 171
creator Chen, Chen
Li, Like
Mei, Renwei
Klausner, James F.
description The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient θ , which represents the fraction of populations being reflected by the solid phase) in the evolution equation to account for the linear drag of the medium. Several particular GLBE schemes have been proposed in the literature and these schemes are very easy to implement; but there exists uncertainty about the need for redefining the macroscopic velocity as there has been no systematic analysis to recover the Brinkman equation from the various GLBE schemes. Rigorous Chapman–Enskog analyses are carried out to show that the momentum equation recovered from these schemes can satisfy Brinkman equation to second order in ϵ only if θ = O ϵ in which ϵ is the ratio of the lattice spacing to the characteristic length of physical dimension. The need for redefining macroscopic velocity is shown to be scheme-dependent. When a body force is encountered such as the gravitational force or that caused by a pressure gradient, different forms of forcing redefinitions are required for each GLBE scheme.
doi_str_mv 10.1007/s10955-018-2005-1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1537769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2022827214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-79bec83ef6f78a6ffc8fbaf68fb3fc4be17c1bcdb3b38c9154edd7ad6e8a0a8b3</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqXwAWwWzAE7TmJnLFVbkIpggNlyHLtJSe3WdoTKxD_wh3wJroLExPLe8M690jsAXGJ0gxGitx6jMs8ThFmSIpQn-AiMcE7TpCwwOQYjhNI0ySjOT8GZ92uEUMnKfAT0tBHbjTDfn18z49_sCk6M6PZeeWgNDI2CCyf2cClCaKWCd7YLHxE3cLbrRWgj86hCY2uorYPzrm_rOO07bA18ts72Pt7rVpyDEy06ry5-9xi8zmcv0_tk-bR4mE6WiSQZCQktKyUZUbrQlIlCa8l0JXQRJ9EyqxSmEleyrkhFmCxxnqm6pqIuFBNIsIqMwdXQa31ouZdtULKR1hglA8c5obQoI3Q9QFtnd73yga9t7-LbnqdRE0tpirNI4YGSznrvlOZb126E23OM-ME5H5zz6JwfnHMcM-mQ8ZE1K-X-mv8P_QBnr4ZU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022827214</pqid></control><display><type>article</type><title>Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media</title><source>Springer Online Journals Complete</source><creator>Chen, Chen ; Li, Like ; Mei, Renwei ; Klausner, James F.</creator><creatorcontrib>Chen, Chen ; Li, Like ; Mei, Renwei ; Klausner, James F. ; Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><description>The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient θ , which represents the fraction of populations being reflected by the solid phase) in the evolution equation to account for the linear drag of the medium. Several particular GLBE schemes have been proposed in the literature and these schemes are very easy to implement; but there exists uncertainty about the need for redefining the macroscopic velocity as there has been no systematic analysis to recover the Brinkman equation from the various GLBE schemes. Rigorous Chapman–Enskog analyses are carried out to show that the momentum equation recovered from these schemes can satisfy Brinkman equation to second order in ϵ only if θ = O ϵ in which ϵ is the ratio of the lattice spacing to the characteristic length of physical dimension. The need for redefining macroscopic velocity is shown to be scheme-dependent. When a body force is encountered such as the gravitational force or that caused by a pressure gradient, different forms of forcing redefinitions are required for each GLBE scheme.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-018-2005-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Boltzmann transport equation ; Fluid dynamics ; Fluid flow ; Mathematical analysis ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Populations ; Porous media ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2018-05, Vol.171 (3), p.493-520</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-79bec83ef6f78a6ffc8fbaf68fb3fc4be17c1bcdb3b38c9154edd7ad6e8a0a8b3</citedby><cites>FETCH-LOGICAL-c343t-79bec83ef6f78a6ffc8fbaf68fb3fc4be17c1bcdb3b38c9154edd7ad6e8a0a8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-018-2005-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-018-2005-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1537769$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Li, Like</creatorcontrib><creatorcontrib>Mei, Renwei</creatorcontrib><creatorcontrib>Klausner, James F.</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><title>Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient θ , which represents the fraction of populations being reflected by the solid phase) in the evolution equation to account for the linear drag of the medium. Several particular GLBE schemes have been proposed in the literature and these schemes are very easy to implement; but there exists uncertainty about the need for redefining the macroscopic velocity as there has been no systematic analysis to recover the Brinkman equation from the various GLBE schemes. Rigorous Chapman–Enskog analyses are carried out to show that the momentum equation recovered from these schemes can satisfy Brinkman equation to second order in ϵ only if θ = O ϵ in which ϵ is the ratio of the lattice spacing to the characteristic length of physical dimension. The need for redefining macroscopic velocity is shown to be scheme-dependent. When a body force is encountered such as the gravitational force or that caused by a pressure gradient, different forms of forcing redefinitions are required for each GLBE scheme.</description><subject>Boltzmann transport equation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Populations</subject><subject>Porous media</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqXwAWwWzAE7TmJnLFVbkIpggNlyHLtJSe3WdoTKxD_wh3wJroLExPLe8M690jsAXGJ0gxGitx6jMs8ThFmSIpQn-AiMcE7TpCwwOQYjhNI0ySjOT8GZ92uEUMnKfAT0tBHbjTDfn18z49_sCk6M6PZeeWgNDI2CCyf2cClCaKWCd7YLHxE3cLbrRWgj86hCY2uorYPzrm_rOO07bA18ts72Pt7rVpyDEy06ry5-9xi8zmcv0_tk-bR4mE6WiSQZCQktKyUZUbrQlIlCa8l0JXQRJ9EyqxSmEleyrkhFmCxxnqm6pqIuFBNIsIqMwdXQa31ouZdtULKR1hglA8c5obQoI3Q9QFtnd73yga9t7-LbnqdRE0tpirNI4YGSznrvlOZb126E23OM-ME5H5zz6JwfnHMcM-mQ8ZE1K-X-mv8P_QBnr4ZU</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Chen, Chen</creator><creator>Li, Like</creator><creator>Mei, Renwei</creator><creator>Klausner, James F.</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180501</creationdate><title>Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media</title><author>Chen, Chen ; Li, Like ; Mei, Renwei ; Klausner, James F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-79bec83ef6f78a6ffc8fbaf68fb3fc4be17c1bcdb3b38c9154edd7ad6e8a0a8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boltzmann transport equation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Populations</topic><topic>Porous media</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Chen</creatorcontrib><creatorcontrib>Li, Like</creatorcontrib><creatorcontrib>Mei, Renwei</creatorcontrib><creatorcontrib>Klausner, James F.</creatorcontrib><creatorcontrib>Univ. of Florida, Gainesville, FL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Chen</au><au>Li, Like</au><au>Mei, Renwei</au><au>Klausner, James F.</au><aucorp>Univ. of Florida, Gainesville, FL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2018-05-01</date><risdate>2018</risdate><volume>171</volume><issue>3</issue><spage>493</spage><epage>520</epage><pages>493-520</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>The gray lattice Boltzmann equation (GLBE) method has recently been used to simulate fluid flow in porous media. It employs a partial bounce-back of populations (through a fractional coefficient θ , which represents the fraction of populations being reflected by the solid phase) in the evolution equation to account for the linear drag of the medium. Several particular GLBE schemes have been proposed in the literature and these schemes are very easy to implement; but there exists uncertainty about the need for redefining the macroscopic velocity as there has been no systematic analysis to recover the Brinkman equation from the various GLBE schemes. Rigorous Chapman–Enskog analyses are carried out to show that the momentum equation recovered from these schemes can satisfy Brinkman equation to second order in ϵ only if θ = O ϵ in which ϵ is the ratio of the lattice spacing to the characteristic length of physical dimension. The need for redefining macroscopic velocity is shown to be scheme-dependent. When a body force is encountered such as the gravitational force or that caused by a pressure gradient, different forms of forcing redefinitions are required for each GLBE scheme.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-018-2005-1</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2018-05, Vol.171 (3), p.493-520
issn 0022-4715
1572-9613
language eng
recordid cdi_osti_scitechconnect_1537769
source Springer Online Journals Complete
subjects Boltzmann transport equation
Fluid dynamics
Fluid flow
Mathematical analysis
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Populations
Porous media
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title Chapman–Enskog Analyses on the Gray Lattice Boltzmann Equation Method for Fluid Flow in Porous Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T15%3A50%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chapman%E2%80%93Enskog%20Analyses%20on%20the%20Gray%20Lattice%20Boltzmann%20Equation%20Method%20for%20Fluid%20Flow%20in%20Porous%20Media&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Chen,%20Chen&rft.aucorp=Univ.%20of%20Florida,%20Gainesville,%20FL%20(United%20States)&rft.date=2018-05-01&rft.volume=171&rft.issue=3&rft.spage=493&rft.epage=520&rft.pages=493-520&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-018-2005-1&rft_dat=%3Cproquest_osti_%3E2022827214%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022827214&rft_id=info:pmid/&rfr_iscdi=true