Investigation of Chloride Poisoning Resistance for Nitrogen-Doped Carbon Nanostructures as Oxygen Depolarized Cathode Catalysts in Acidic Media

HCl electrolysis used to manufacture Cl 2 , a compound of high industrial value, suffers from its high energy requirements. Significant energy savings can be attained by an alternative oxygen depolarized cathode (ODC)-based process where oxygen is reduced at the cathode instead of protons. Though th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis letters 2017-12, Vol.147 (12), p.2903-2909
Hauptverfasser: Mamtani, Kuldeep, Jain, Deeksha, Co, Anne C., Ozkan, Umit S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2909
container_issue 12
container_start_page 2903
container_title Catalysis letters
container_volume 147
creator Mamtani, Kuldeep
Jain, Deeksha
Co, Anne C.
Ozkan, Umit S.
description HCl electrolysis used to manufacture Cl 2 , a compound of high industrial value, suffers from its high energy requirements. Significant energy savings can be attained by an alternative oxygen depolarized cathode (ODC)-based process where oxygen is reduced at the cathode instead of protons. Though the ODC process is extremely attractive, the state of the art catalysts for oxygen reduction reaction (ORR) suffer from chloride ion poisoning and/or involve toxic chemicals such as hydrogen sulfide (H 2 S). In the present work, we demonstrate that non-metal containing CN x catalysts do not get deactivated upon exposure to chloride ion environment unlike Pt/C or Rh x S y /C where significant chloride ion poisoning was observed. The synthesis of these CN x materials is also extremely facile and scalable. In addition, the performance of the synthesized CN x catalysts was found to be very stable in HCl environment. Thus, the results presented here demonstrate the promise of CN x materials as alternative catalysts for ODC-based HCl electrolysis process to manufacture Cl 2 in a sustainable and safer way. Graphical Abstract
doi_str_mv 10.1007/s10562-017-2205-3
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1537726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A513923820</galeid><sourcerecordid>A513923820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-8dd88b38ea9bbc58220397faebe6168bdac5770580b5a8ace9e26c83bd3d3deb3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhSMEEqXwAOwsWLFI8Q-OneVoWuhIpUUFpO4sx7nJuErtwXZQh5fglXuHIKEu0F1cy_rO0bFPVb1m9IRRqt5nRmXDa8pUzTmVtXhSHTGpeK1Ve_MUz5SxWih-87x6kfMtpbRVrD2qfm_CT8jFj7b4GEgcyHo7xeR7IF-izzH4MJJryD4XGxyQISZy6UuKI4T6NO6gJ2ubOpRe2hBzSbMrc4JMbCZX93ukyCns4mST__WHLduI3rjttM8lEx_IyvneO_IZem9fVs8GO2V49XcfV98_nn1bn9cXV58269VF7T5IUWrd91p3QoNtu85JjW8WrRosdNCwRne9dVIpKjXtpNXWQQu8cVp0vcCBThxXbxZfzOxNdr6A27oYArhimBRK8Qahtwu0S_HHjN9kbuOcAuYynEutW8YERepkoUY7gfFhiCVZh9PDnUdLGDzeryQTLReaHwTvHgmQKXBfRjvnbDZfrx-zbGFdijknGMwu-Tub9oZRc2jeLM0bbN4cmjcCNXzRZGTDCOlf7P-LHgDDpLJY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2258891130</pqid></control><display><type>article</type><title>Investigation of Chloride Poisoning Resistance for Nitrogen-Doped Carbon Nanostructures as Oxygen Depolarized Cathode Catalysts in Acidic Media</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mamtani, Kuldeep ; Jain, Deeksha ; Co, Anne C. ; Ozkan, Umit S.</creator><creatorcontrib>Mamtani, Kuldeep ; Jain, Deeksha ; Co, Anne C. ; Ozkan, Umit S. ; The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><description>HCl electrolysis used to manufacture Cl 2 , a compound of high industrial value, suffers from its high energy requirements. Significant energy savings can be attained by an alternative oxygen depolarized cathode (ODC)-based process where oxygen is reduced at the cathode instead of protons. Though the ODC process is extremely attractive, the state of the art catalysts for oxygen reduction reaction (ORR) suffer from chloride ion poisoning and/or involve toxic chemicals such as hydrogen sulfide (H 2 S). In the present work, we demonstrate that non-metal containing CN x catalysts do not get deactivated upon exposure to chloride ion environment unlike Pt/C or Rh x S y /C where significant chloride ion poisoning was observed. The synthesis of these CN x materials is also extremely facile and scalable. In addition, the performance of the synthesized CN x catalysts was found to be very stable in HCl environment. Thus, the results presented here demonstrate the promise of CN x materials as alternative catalysts for ODC-based HCl electrolysis process to manufacture Cl 2 in a sustainable and safer way. Graphical Abstract</description><identifier>ISSN: 1011-372X</identifier><identifier>EISSN: 1572-879X</identifier><identifier>DOI: 10.1007/s10562-017-2205-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Catalysis ; Catalysts ; Cathodes ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chloride ; Chloride ions ; Chloride resistance ; Deactivation ; Depolarization ; Electrolysis ; Electrolysis (Chemistry) ; Energy conservation ; Energy requirements ; Hazardous substances ; Hydrogen sulfide ; Industrial Chemistry/Chemical Engineering ; Organic chemistry ; Organometallic Chemistry ; Oxygen reduction reactions ; Physical Chemistry ; Poisoning</subject><ispartof>Catalysis letters, 2017-12, Vol.147 (12), p.2903-2909</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Catalysis Letters is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-8dd88b38ea9bbc58220397faebe6168bdac5770580b5a8ace9e26c83bd3d3deb3</citedby><cites>FETCH-LOGICAL-c453t-8dd88b38ea9bbc58220397faebe6168bdac5770580b5a8ace9e26c83bd3d3deb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10562-017-2205-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10562-017-2205-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1537726$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mamtani, Kuldeep</creatorcontrib><creatorcontrib>Jain, Deeksha</creatorcontrib><creatorcontrib>Co, Anne C.</creatorcontrib><creatorcontrib>Ozkan, Umit S.</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><title>Investigation of Chloride Poisoning Resistance for Nitrogen-Doped Carbon Nanostructures as Oxygen Depolarized Cathode Catalysts in Acidic Media</title><title>Catalysis letters</title><addtitle>Catal Lett</addtitle><description>HCl electrolysis used to manufacture Cl 2 , a compound of high industrial value, suffers from its high energy requirements. Significant energy savings can be attained by an alternative oxygen depolarized cathode (ODC)-based process where oxygen is reduced at the cathode instead of protons. Though the ODC process is extremely attractive, the state of the art catalysts for oxygen reduction reaction (ORR) suffer from chloride ion poisoning and/or involve toxic chemicals such as hydrogen sulfide (H 2 S). In the present work, we demonstrate that non-metal containing CN x catalysts do not get deactivated upon exposure to chloride ion environment unlike Pt/C or Rh x S y /C where significant chloride ion poisoning was observed. The synthesis of these CN x materials is also extremely facile and scalable. In addition, the performance of the synthesized CN x catalysts was found to be very stable in HCl environment. Thus, the results presented here demonstrate the promise of CN x materials as alternative catalysts for ODC-based HCl electrolysis process to manufacture Cl 2 in a sustainable and safer way. Graphical Abstract</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chloride</subject><subject>Chloride ions</subject><subject>Chloride resistance</subject><subject>Deactivation</subject><subject>Depolarization</subject><subject>Electrolysis</subject><subject>Electrolysis (Chemistry)</subject><subject>Energy conservation</subject><subject>Energy requirements</subject><subject>Hazardous substances</subject><subject>Hydrogen sulfide</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Organic chemistry</subject><subject>Organometallic Chemistry</subject><subject>Oxygen reduction reactions</subject><subject>Physical Chemistry</subject><subject>Poisoning</subject><issn>1011-372X</issn><issn>1572-879X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc1u1DAUhSMEEqXwAOwsWLFI8Q-OneVoWuhIpUUFpO4sx7nJuErtwXZQh5fglXuHIKEu0F1cy_rO0bFPVb1m9IRRqt5nRmXDa8pUzTmVtXhSHTGpeK1Ve_MUz5SxWih-87x6kfMtpbRVrD2qfm_CT8jFj7b4GEgcyHo7xeR7IF-izzH4MJJryD4XGxyQISZy6UuKI4T6NO6gJ2ubOpRe2hBzSbMrc4JMbCZX93ukyCns4mST__WHLduI3rjttM8lEx_IyvneO_IZem9fVs8GO2V49XcfV98_nn1bn9cXV58269VF7T5IUWrd91p3QoNtu85JjW8WrRosdNCwRne9dVIpKjXtpNXWQQu8cVp0vcCBThxXbxZfzOxNdr6A27oYArhimBRK8Qahtwu0S_HHjN9kbuOcAuYynEutW8YERepkoUY7gfFhiCVZh9PDnUdLGDzeryQTLReaHwTvHgmQKXBfRjvnbDZfrx-zbGFdijknGMwu-Tub9oZRc2jeLM0bbN4cmjcCNXzRZGTDCOlf7P-LHgDDpLJY</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Mamtani, Kuldeep</creator><creator>Jain, Deeksha</creator><creator>Co, Anne C.</creator><creator>Ozkan, Umit S.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OTOTI</scope></search><sort><creationdate>20171201</creationdate><title>Investigation of Chloride Poisoning Resistance for Nitrogen-Doped Carbon Nanostructures as Oxygen Depolarized Cathode Catalysts in Acidic Media</title><author>Mamtani, Kuldeep ; Jain, Deeksha ; Co, Anne C. ; Ozkan, Umit S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-8dd88b38ea9bbc58220397faebe6168bdac5770580b5a8ace9e26c83bd3d3deb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chloride</topic><topic>Chloride ions</topic><topic>Chloride resistance</topic><topic>Deactivation</topic><topic>Depolarization</topic><topic>Electrolysis</topic><topic>Electrolysis (Chemistry)</topic><topic>Energy conservation</topic><topic>Energy requirements</topic><topic>Hazardous substances</topic><topic>Hydrogen sulfide</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Organic chemistry</topic><topic>Organometallic Chemistry</topic><topic>Oxygen reduction reactions</topic><topic>Physical Chemistry</topic><topic>Poisoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mamtani, Kuldeep</creatorcontrib><creatorcontrib>Jain, Deeksha</creatorcontrib><creatorcontrib>Co, Anne C.</creatorcontrib><creatorcontrib>Ozkan, Umit S.</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV</collection><jtitle>Catalysis letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mamtani, Kuldeep</au><au>Jain, Deeksha</au><au>Co, Anne C.</au><au>Ozkan, Umit S.</au><aucorp>The Ohio State Univ., Columbus, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of Chloride Poisoning Resistance for Nitrogen-Doped Carbon Nanostructures as Oxygen Depolarized Cathode Catalysts in Acidic Media</atitle><jtitle>Catalysis letters</jtitle><stitle>Catal Lett</stitle><date>2017-12-01</date><risdate>2017</risdate><volume>147</volume><issue>12</issue><spage>2903</spage><epage>2909</epage><pages>2903-2909</pages><issn>1011-372X</issn><eissn>1572-879X</eissn><abstract>HCl electrolysis used to manufacture Cl 2 , a compound of high industrial value, suffers from its high energy requirements. Significant energy savings can be attained by an alternative oxygen depolarized cathode (ODC)-based process where oxygen is reduced at the cathode instead of protons. Though the ODC process is extremely attractive, the state of the art catalysts for oxygen reduction reaction (ORR) suffer from chloride ion poisoning and/or involve toxic chemicals such as hydrogen sulfide (H 2 S). In the present work, we demonstrate that non-metal containing CN x catalysts do not get deactivated upon exposure to chloride ion environment unlike Pt/C or Rh x S y /C where significant chloride ion poisoning was observed. The synthesis of these CN x materials is also extremely facile and scalable. In addition, the performance of the synthesized CN x catalysts was found to be very stable in HCl environment. Thus, the results presented here demonstrate the promise of CN x materials as alternative catalysts for ODC-based HCl electrolysis process to manufacture Cl 2 in a sustainable and safer way. Graphical Abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10562-017-2205-3</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1011-372X
ispartof Catalysis letters, 2017-12, Vol.147 (12), p.2903-2909
issn 1011-372X
1572-879X
language eng
recordid cdi_osti_scitechconnect_1537726
source SpringerLink Journals - AutoHoldings
subjects Catalysis
Catalysts
Cathodes
Chemical synthesis
Chemistry
Chemistry and Materials Science
Chloride
Chloride ions
Chloride resistance
Deactivation
Depolarization
Electrolysis
Electrolysis (Chemistry)
Energy conservation
Energy requirements
Hazardous substances
Hydrogen sulfide
Industrial Chemistry/Chemical Engineering
Organic chemistry
Organometallic Chemistry
Oxygen reduction reactions
Physical Chemistry
Poisoning
title Investigation of Chloride Poisoning Resistance for Nitrogen-Doped Carbon Nanostructures as Oxygen Depolarized Cathode Catalysts in Acidic Media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T04%3A18%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20Chloride%20Poisoning%20Resistance%20for%20Nitrogen-Doped%20Carbon%20Nanostructures%20as%20Oxygen%20Depolarized%20Cathode%20Catalysts%20in%20Acidic%20Media&rft.jtitle=Catalysis%20letters&rft.au=Mamtani,%20Kuldeep&rft.aucorp=The%20Ohio%20State%20Univ.,%20Columbus,%20OH%20(United%20States)&rft.date=2017-12-01&rft.volume=147&rft.issue=12&rft.spage=2903&rft.epage=2909&rft.pages=2903-2909&rft.issn=1011-372X&rft.eissn=1572-879X&rft_id=info:doi/10.1007/s10562-017-2205-3&rft_dat=%3Cgale_osti_%3EA513923820%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2258891130&rft_id=info:pmid/&rft_galeid=A513923820&rfr_iscdi=true