Titanium nitride formation by a dual-stage femtosecond laser process
Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titan...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2018-06, Vol.124 (6), p.1-17, Article 411 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 124 |
creator | Hammouti, S. Holybee, B. Zhu, W. Allain, J. P. Jurczyk, B. Ruzic, D. N. |
description | Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N
2
individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti
2
O
3
and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm
−2
under argon and 5 W/1.6 J cm
−2
under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces. |
doi_str_mv | 10.1007/s00339-018-1824-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1537673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036334297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3d2f53a659d52cef2acf4c0ff9e082fc9984f94154ec12fb195ec3f8b1bd96ac3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNui52iSyX7kKNWqUPBSzyGbTWpKd1OTLLT_3pQVPDmXOczzDi8PQreUPFBC6sdICIDAhDaYNozjwxmaUQ4MkwrIOZoRwWvcgKgu0VWMW5KHMzZDz2uX1ODGvhhcCq4zhfWhV8n5oWiPhSq6Ue1wTGqTL6ZPPhrth67YqWhCsQ9emxiv0YVVu2hufvccfS5f1os3vPp4fV88rbAGDglDx2wJqipFVzJtLFPack2sFYY0zGohGm4FpyU3mjLbUlEaDbZpaduJSmmYo7vpr4_JyahdMvor1xmMTpKWUFc1ZOh-gnK579HEJLd-DEPuJRmBCoAzUWeKTpQOPsZgrNwH16twlJTIk1E5GZXZqDwZlYecYVMmZnbYmPD3-f_QDxX0eZM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036334297</pqid></control><display><type>article</type><title>Titanium nitride formation by a dual-stage femtosecond laser process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hammouti, S. ; Holybee, B. ; Zhu, W. ; Allain, J. P. ; Jurczyk, B. ; Ruzic, D. N.</creator><creatorcontrib>Hammouti, S. ; Holybee, B. ; Zhu, W. ; Allain, J. P. ; Jurczyk, B. ; Ruzic, D. N. ; Starfire Industries, LLC, Champaign, IL (United States) ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N
2
individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti
2
O
3
and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm
−2
under argon and 5 W/1.6 J cm
−2
under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-018-1824-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Argon ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Contact angle ; Grooves ; Irradiation ; Laser processing ; Lasers ; Machines ; Manufacturing ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Protuberances ; Structural hierarchy ; Surfaces and Interfaces ; Thin Films ; Titanium nitride ; Titanium oxides ; Wettability</subject><ispartof>Applied physics. A, Materials science & processing, 2018-06, Vol.124 (6), p.1-17, Article 411</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3d2f53a659d52cef2acf4c0ff9e082fc9984f94154ec12fb195ec3f8b1bd96ac3</citedby><cites>FETCH-LOGICAL-c343t-3d2f53a659d52cef2acf4c0ff9e082fc9984f94154ec12fb195ec3f8b1bd96ac3</cites><orcidid>0000-0002-9233-7959 ; 0000000292337959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-018-1824-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-018-1824-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1537673$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hammouti, S.</creatorcontrib><creatorcontrib>Holybee, B.</creatorcontrib><creatorcontrib>Zhu, W.</creatorcontrib><creatorcontrib>Allain, J. P.</creatorcontrib><creatorcontrib>Jurczyk, B.</creatorcontrib><creatorcontrib>Ruzic, D. N.</creatorcontrib><creatorcontrib>Starfire Industries, LLC, Champaign, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Titanium nitride formation by a dual-stage femtosecond laser process</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N
2
individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti
2
O
3
and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm
−2
under argon and 5 W/1.6 J cm
−2
under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.</description><subject>Applied physics</subject><subject>Argon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Contact angle</subject><subject>Grooves</subject><subject>Irradiation</subject><subject>Laser processing</subject><subject>Lasers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Protuberances</subject><subject>Structural hierarchy</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium nitride</subject><subject>Titanium oxides</subject><subject>Wettability</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNui52iSyX7kKNWqUPBSzyGbTWpKd1OTLLT_3pQVPDmXOczzDi8PQreUPFBC6sdICIDAhDaYNozjwxmaUQ4MkwrIOZoRwWvcgKgu0VWMW5KHMzZDz2uX1ODGvhhcCq4zhfWhV8n5oWiPhSq6Ue1wTGqTL6ZPPhrth67YqWhCsQ9emxiv0YVVu2hufvccfS5f1os3vPp4fV88rbAGDglDx2wJqipFVzJtLFPack2sFYY0zGohGm4FpyU3mjLbUlEaDbZpaduJSmmYo7vpr4_JyahdMvor1xmMTpKWUFc1ZOh-gnK579HEJLd-DEPuJRmBCoAzUWeKTpQOPsZgrNwH16twlJTIk1E5GZXZqDwZlYecYVMmZnbYmPD3-f_QDxX0eZM</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Hammouti, S.</creator><creator>Holybee, B.</creator><creator>Zhu, W.</creator><creator>Allain, J. P.</creator><creator>Jurczyk, B.</creator><creator>Ruzic, D. N.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9233-7959</orcidid><orcidid>https://orcid.org/0000000292337959</orcidid></search><sort><creationdate>20180601</creationdate><title>Titanium nitride formation by a dual-stage femtosecond laser process</title><author>Hammouti, S. ; Holybee, B. ; Zhu, W. ; Allain, J. P. ; Jurczyk, B. ; Ruzic, D. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3d2f53a659d52cef2acf4c0ff9e082fc9984f94154ec12fb195ec3f8b1bd96ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Argon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Contact angle</topic><topic>Grooves</topic><topic>Irradiation</topic><topic>Laser processing</topic><topic>Lasers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Protuberances</topic><topic>Structural hierarchy</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium nitride</topic><topic>Titanium oxides</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammouti, S.</creatorcontrib><creatorcontrib>Holybee, B.</creatorcontrib><creatorcontrib>Zhu, W.</creatorcontrib><creatorcontrib>Allain, J. P.</creatorcontrib><creatorcontrib>Jurczyk, B.</creatorcontrib><creatorcontrib>Ruzic, D. N.</creatorcontrib><creatorcontrib>Starfire Industries, LLC, Champaign, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammouti, S.</au><au>Holybee, B.</au><au>Zhu, W.</au><au>Allain, J. P.</au><au>Jurczyk, B.</au><au>Ruzic, D. N.</au><aucorp>Starfire Industries, LLC, Champaign, IL (United States)</aucorp><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Titanium nitride formation by a dual-stage femtosecond laser process</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>124</volume><issue>6</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>411</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N
2
individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti
2
O
3
and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm
−2
under argon and 5 W/1.6 J cm
−2
under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-018-1824-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9233-7959</orcidid><orcidid>https://orcid.org/0000000292337959</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2018-06, Vol.124 (6), p.1-17, Article 411 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_osti_scitechconnect_1537673 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applied physics Argon Characterization and Evaluation of Materials Condensed Matter Physics Contact angle Grooves Irradiation Laser processing Lasers Machines Manufacturing Materials Science Nanotechnology Optical and Electronic Materials Physics Physics and Astronomy Processes Protuberances Structural hierarchy Surfaces and Interfaces Thin Films Titanium nitride Titanium oxides Wettability |
title | Titanium nitride formation by a dual-stage femtosecond laser process |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Titanium%20nitride%20formation%20by%20a%20dual-stage%20femtosecond%20laser%20process&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Hammouti,%20S.&rft.aucorp=Starfire%20Industries,%20LLC,%20Champaign,%20IL%20(United%20States)&rft.date=2018-06-01&rft.volume=124&rft.issue=6&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=411&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-018-1824-x&rft_dat=%3Cproquest_osti_%3E2036334297%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036334297&rft_id=info:pmid/&rfr_iscdi=true |