Titanium nitride formation by a dual-stage femtosecond laser process

Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2018-06, Vol.124 (6), p.1-17, Article 411
Hauptverfasser: Hammouti, S., Holybee, B., Zhu, W., Allain, J. P., Jurczyk, B., Ruzic, D. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 6
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 124
creator Hammouti, S.
Holybee, B.
Zhu, W.
Allain, J. P.
Jurczyk, B.
Ruzic, D. N.
description Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N 2 individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti 2 O 3 and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm −2 under argon and 5 W/1.6 J cm −2 under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.
doi_str_mv 10.1007/s00339-018-1824-x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1537673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2036334297</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3d2f53a659d52cef2acf4c0ff9e082fc9984f94154ec12fb195ec3f8b1bd96ac3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNui52iSyX7kKNWqUPBSzyGbTWpKd1OTLLT_3pQVPDmXOczzDi8PQreUPFBC6sdICIDAhDaYNozjwxmaUQ4MkwrIOZoRwWvcgKgu0VWMW5KHMzZDz2uX1ODGvhhcCq4zhfWhV8n5oWiPhSq6Ue1wTGqTL6ZPPhrth67YqWhCsQ9emxiv0YVVu2hufvccfS5f1os3vPp4fV88rbAGDglDx2wJqipFVzJtLFPack2sFYY0zGohGm4FpyU3mjLbUlEaDbZpaduJSmmYo7vpr4_JyahdMvor1xmMTpKWUFc1ZOh-gnK579HEJLd-DEPuJRmBCoAzUWeKTpQOPsZgrNwH16twlJTIk1E5GZXZqDwZlYecYVMmZnbYmPD3-f_QDxX0eZM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036334297</pqid></control><display><type>article</type><title>Titanium nitride formation by a dual-stage femtosecond laser process</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hammouti, S. ; Holybee, B. ; Zhu, W. ; Allain, J. P. ; Jurczyk, B. ; Ruzic, D. N.</creator><creatorcontrib>Hammouti, S. ; Holybee, B. ; Zhu, W. ; Allain, J. P. ; Jurczyk, B. ; Ruzic, D. N. ; Starfire Industries, LLC, Champaign, IL (United States) ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N 2 individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti 2 O 3 and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm −2 under argon and 5 W/1.6 J cm −2 under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-018-1824-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied physics ; Argon ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Contact angle ; Grooves ; Irradiation ; Laser processing ; Lasers ; Machines ; Manufacturing ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Physics ; Physics and Astronomy ; Processes ; Protuberances ; Structural hierarchy ; Surfaces and Interfaces ; Thin Films ; Titanium nitride ; Titanium oxides ; Wettability</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2018-06, Vol.124 (6), p.1-17, Article 411</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3d2f53a659d52cef2acf4c0ff9e082fc9984f94154ec12fb195ec3f8b1bd96ac3</citedby><cites>FETCH-LOGICAL-c343t-3d2f53a659d52cef2acf4c0ff9e082fc9984f94154ec12fb195ec3f8b1bd96ac3</cites><orcidid>0000-0002-9233-7959 ; 0000000292337959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-018-1824-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-018-1824-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1537673$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hammouti, S.</creatorcontrib><creatorcontrib>Holybee, B.</creatorcontrib><creatorcontrib>Zhu, W.</creatorcontrib><creatorcontrib>Allain, J. P.</creatorcontrib><creatorcontrib>Jurczyk, B.</creatorcontrib><creatorcontrib>Ruzic, D. N.</creatorcontrib><creatorcontrib>Starfire Industries, LLC, Champaign, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Titanium nitride formation by a dual-stage femtosecond laser process</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N 2 individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti 2 O 3 and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm −2 under argon and 5 W/1.6 J cm −2 under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.</description><subject>Applied physics</subject><subject>Argon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Contact angle</subject><subject>Grooves</subject><subject>Irradiation</subject><subject>Laser processing</subject><subject>Lasers</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Protuberances</subject><subject>Structural hierarchy</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Titanium nitride</subject><subject>Titanium oxides</subject><subject>Wettability</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNui52iSyX7kKNWqUPBSzyGbTWpKd1OTLLT_3pQVPDmXOczzDi8PQreUPFBC6sdICIDAhDaYNozjwxmaUQ4MkwrIOZoRwWvcgKgu0VWMW5KHMzZDz2uX1ODGvhhcCq4zhfWhV8n5oWiPhSq6Ue1wTGqTL6ZPPhrth67YqWhCsQ9emxiv0YVVu2hufvccfS5f1os3vPp4fV88rbAGDglDx2wJqipFVzJtLFPack2sFYY0zGohGm4FpyU3mjLbUlEaDbZpaduJSmmYo7vpr4_JyahdMvor1xmMTpKWUFc1ZOh-gnK579HEJLd-DEPuJRmBCoAzUWeKTpQOPsZgrNwH16twlJTIk1E5GZXZqDwZlYecYVMmZnbYmPD3-f_QDxX0eZM</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Hammouti, S.</creator><creator>Holybee, B.</creator><creator>Zhu, W.</creator><creator>Allain, J. P.</creator><creator>Jurczyk, B.</creator><creator>Ruzic, D. N.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9233-7959</orcidid><orcidid>https://orcid.org/0000000292337959</orcidid></search><sort><creationdate>20180601</creationdate><title>Titanium nitride formation by a dual-stage femtosecond laser process</title><author>Hammouti, S. ; Holybee, B. ; Zhu, W. ; Allain, J. P. ; Jurczyk, B. ; Ruzic, D. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3d2f53a659d52cef2acf4c0ff9e082fc9984f94154ec12fb195ec3f8b1bd96ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied physics</topic><topic>Argon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Contact angle</topic><topic>Grooves</topic><topic>Irradiation</topic><topic>Laser processing</topic><topic>Lasers</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Protuberances</topic><topic>Structural hierarchy</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Titanium nitride</topic><topic>Titanium oxides</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammouti, S.</creatorcontrib><creatorcontrib>Holybee, B.</creatorcontrib><creatorcontrib>Zhu, W.</creatorcontrib><creatorcontrib>Allain, J. P.</creatorcontrib><creatorcontrib>Jurczyk, B.</creatorcontrib><creatorcontrib>Ruzic, D. N.</creatorcontrib><creatorcontrib>Starfire Industries, LLC, Champaign, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammouti, S.</au><au>Holybee, B.</au><au>Zhu, W.</au><au>Allain, J. P.</au><au>Jurczyk, B.</au><au>Ruzic, D. N.</au><aucorp>Starfire Industries, LLC, Champaign, IL (United States)</aucorp><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Titanium nitride formation by a dual-stage femtosecond laser process</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2018-06-01</date><risdate>2018</risdate><volume>124</volume><issue>6</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>411</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Formation of TiN by femtosecond laser processing in controlled gas atmosphere is reported. A dual-stage process was designed and aimed to first remove and restructure the native oxide layer of titanium surface through laser irradiation under an argon-controlled atmosphere, and then to maximize titanium nitride formation through an irradiation under a nitrogen reactive environment. An extensive XPS study was performed to identify and quantify laser-induced titanium surface chemistry modifications after a single-stage laser process (Ar and N 2 individually), and a dual-stage laser process. The importance of each step that composes the dual-stage laser process was demonstrated and leads to the dual-stage laser process for the formation of TiO, Ti 2 O 3 and TiN. In this study, the largest nitride formation occurs for the dual stage process with laser conditions at 4 W/1.3 J cm −2 under argon and 5 W/1.6 J cm −2 under nitrogen, yielding a total TiN composition of 8.9%. Characterization of both single-stage and dual-stage laser process-induced surface morphologies has been performed as well, leading to the observation of a wide range of hierarchical surface structures such as high-frequency ripples, grooves, protuberances and pillow-like patterns. Finally, water wettability was assessed by means of contact angle measurements on untreated titanium surface, and titanium surfaces resulting from either single-stage laser process or dual-stage laser process. Dual-stage laser process allows a transition of titanium surface, from phobic (93°) to philic (35°), making accessible both hydrophilic and chemically functionalized hierarchical surfaces.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-018-1824-x</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9233-7959</orcidid><orcidid>https://orcid.org/0000000292337959</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2018-06, Vol.124 (6), p.1-17, Article 411
issn 0947-8396
1432-0630
language eng
recordid cdi_osti_scitechconnect_1537673
source SpringerLink Journals - AutoHoldings
subjects Applied physics
Argon
Characterization and Evaluation of Materials
Condensed Matter Physics
Contact angle
Grooves
Irradiation
Laser processing
Lasers
Machines
Manufacturing
Materials Science
Nanotechnology
Optical and Electronic Materials
Physics
Physics and Astronomy
Processes
Protuberances
Structural hierarchy
Surfaces and Interfaces
Thin Films
Titanium nitride
Titanium oxides
Wettability
title Titanium nitride formation by a dual-stage femtosecond laser process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T15%3A40%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Titanium%20nitride%20formation%20by%20a%20dual-stage%20femtosecond%20laser%20process&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Hammouti,%20S.&rft.aucorp=Starfire%20Industries,%20LLC,%20Champaign,%20IL%20(United%20States)&rft.date=2018-06-01&rft.volume=124&rft.issue=6&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=411&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-018-1824-x&rft_dat=%3Cproquest_osti_%3E2036334297%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036334297&rft_id=info:pmid/&rfr_iscdi=true