The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA

The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote sensing (Basel, Switzerland) Switzerland), 2017-06, Vol.9 (6), p.612
Hauptverfasser: Middleton, Elizabeth M., Rascher, Uwe, Corp, Lawrence A., Huemmrich, K. Fred, Cook, Bruce D., Noormets, Asko, Schickling, Anke, Pinto, Francisco, Alonso, Luis, Damm, Alexander, Guanter, Luis, Colombo, Roberto, Campbell, Petya K. E., Landis, David R., Zhang, Qingyuan, Rossini, Micol, Schuettemeyer, Dirk, Bianchi, Remo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 612
container_title Remote sensing (Basel, Switzerland)
container_volume 9
creator Middleton, Elizabeth M.
Rascher, Uwe
Corp, Lawrence A.
Huemmrich, K. Fred
Cook, Bruce D.
Noormets, Asko
Schickling, Anke
Pinto, Francisco
Alonso, Luis
Damm, Alexander
Guanter, Luis
Colombo, Roberto
Campbell, Petya K. E.
Landis, David R.
Zhang, Qingyuan
Rossini, Micol
Schuettemeyer, Dirk
Bianchi, Remo
description The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest.
doi_str_mv 10.3390/rs9060612
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1537157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2195439358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-30da758563b5b21736b01a286ac8b92042d387fd1dd377e974e02a3b8fd8c143</originalsourceid><addsrcrecordid>eNpN0E1LxDAQBuAiCop68O4h6EmwOsm0TXNcFr9g0YVdwVtI09SN1mRN4mH_vZEVcS4zh2eG4S2KEwpXiAKuQxTQQEPZTnHAgLOyYoLt_pv3i-MY3yAXIhVQHRTDcmUIA4rkdnbzUj4vyMSGzgdnyFR9rJV9dUQlkrKaq_BuAlkGpROZ-W7047ghc5vpfFQuqWS9I9aRRx_SKq8HP1qnLsnzYnJU7A1qjOb4tx8Wy9ub5fS-nD3dPUwns1JjBalE6BWv27rBru4Y5dh0QBVrG6XbTjCoWI8tH3ra98i5EbwywBR27dC3mlZ4WJxtz_qYrIzaJqNX2jtndJK0Rk5rntH5Fq2D__wyMck3_xVcfksyKuoKBdZtVhdbpYOPMZhBroP9UGEjKciftOVf2tmebq1TUUmXQr4ElANQCqLFb-mMdfE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195439358</pqid></control><display><type>article</type><title>The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>NASA Technical Reports Server</source><creator>Middleton, Elizabeth M. ; Rascher, Uwe ; Corp, Lawrence A. ; Huemmrich, K. Fred ; Cook, Bruce D. ; Noormets, Asko ; Schickling, Anke ; Pinto, Francisco ; Alonso, Luis ; Damm, Alexander ; Guanter, Luis ; Colombo, Roberto ; Campbell, Petya K. E. ; Landis, David R. ; Zhang, Qingyuan ; Rossini, Micol ; Schuettemeyer, Dirk ; Bianchi, Remo</creator><creatorcontrib>Middleton, Elizabeth M. ; Rascher, Uwe ; Corp, Lawrence A. ; Huemmrich, K. Fred ; Cook, Bruce D. ; Noormets, Asko ; Schickling, Anke ; Pinto, Francisco ; Alonso, Luis ; Damm, Alexander ; Guanter, Luis ; Colombo, Roberto ; Campbell, Petya K. E. ; Landis, David R. ; Zhang, Qingyuan ; Rossini, Micol ; Schuettemeyer, Dirk ; Bianchi, Remo ; North Carolina State University, Raleigh, NC (United States)</creatorcontrib><description>The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs9060612</identifier><language>eng</language><publisher>Goddard Space Flight Center: MDPI AG</publisher><subject>Air temperature ; Airborne instruments ; Aircraft ; Canopies ; Carbon cycle ; Carbon dioxide ; chlorophyll fluorescence ; Coniferous forests ; Diurnal ; diurnal responses ; Diurnal variations ; Earth Resources And Remote Sensing ; far-red SIF ; Fluorescence ; Fluxes ; Forests ; Fratio ; G-LiHT ; GEP ; HyPlant ; Infrared spectra ; Instrument packages ; Laboratories ; Lidar ; LUE ; OTHER INSTRUMENTATION ; Photochemicals ; Pine trees ; Plantations ; red SIF ; Reflectance ; Remote Sensing ; Sensors ; Short wave radiation ; SIF ratio ; Simulation ; Spectrum analysis ; Statistical analysis ; Structure-function relationships ; Surface temperature ; Temperature effects ; Temperature gradients ; Vegetation</subject><ispartof>Remote sensing (Basel, Switzerland), 2017-06, Vol.9 (6), p.612</ispartof><rights>2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-30da758563b5b21736b01a286ac8b92042d387fd1dd377e974e02a3b8fd8c143</citedby><cites>FETCH-LOGICAL-c340t-30da758563b5b21736b01a286ac8b92042d387fd1dd377e974e02a3b8fd8c143</cites><orcidid>0000-0002-6052-3140 ; 0000-0002-9993-4588 ; 0000000174467752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,861,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1537157$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Middleton, Elizabeth M.</creatorcontrib><creatorcontrib>Rascher, Uwe</creatorcontrib><creatorcontrib>Corp, Lawrence A.</creatorcontrib><creatorcontrib>Huemmrich, K. Fred</creatorcontrib><creatorcontrib>Cook, Bruce D.</creatorcontrib><creatorcontrib>Noormets, Asko</creatorcontrib><creatorcontrib>Schickling, Anke</creatorcontrib><creatorcontrib>Pinto, Francisco</creatorcontrib><creatorcontrib>Alonso, Luis</creatorcontrib><creatorcontrib>Damm, Alexander</creatorcontrib><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Colombo, Roberto</creatorcontrib><creatorcontrib>Campbell, Petya K. E.</creatorcontrib><creatorcontrib>Landis, David R.</creatorcontrib><creatorcontrib>Zhang, Qingyuan</creatorcontrib><creatorcontrib>Rossini, Micol</creatorcontrib><creatorcontrib>Schuettemeyer, Dirk</creatorcontrib><creatorcontrib>Bianchi, Remo</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><title>The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA</title><title>Remote sensing (Basel, Switzerland)</title><description>The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest.</description><subject>Air temperature</subject><subject>Airborne instruments</subject><subject>Aircraft</subject><subject>Canopies</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>chlorophyll fluorescence</subject><subject>Coniferous forests</subject><subject>Diurnal</subject><subject>diurnal responses</subject><subject>Diurnal variations</subject><subject>Earth Resources And Remote Sensing</subject><subject>far-red SIF</subject><subject>Fluorescence</subject><subject>Fluxes</subject><subject>Forests</subject><subject>Fratio</subject><subject>G-LiHT</subject><subject>GEP</subject><subject>HyPlant</subject><subject>Infrared spectra</subject><subject>Instrument packages</subject><subject>Laboratories</subject><subject>Lidar</subject><subject>LUE</subject><subject>OTHER INSTRUMENTATION</subject><subject>Photochemicals</subject><subject>Pine trees</subject><subject>Plantations</subject><subject>red SIF</subject><subject>Reflectance</subject><subject>Remote Sensing</subject><subject>Sensors</subject><subject>Short wave radiation</subject><subject>SIF ratio</subject><subject>Simulation</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Structure-function relationships</subject><subject>Surface temperature</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Vegetation</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpN0E1LxDAQBuAiCop68O4h6EmwOsm0TXNcFr9g0YVdwVtI09SN1mRN4mH_vZEVcS4zh2eG4S2KEwpXiAKuQxTQQEPZTnHAgLOyYoLt_pv3i-MY3yAXIhVQHRTDcmUIA4rkdnbzUj4vyMSGzgdnyFR9rJV9dUQlkrKaq_BuAlkGpROZ-W7047ghc5vpfFQuqWS9I9aRRx_SKq8HP1qnLsnzYnJU7A1qjOb4tx8Wy9ub5fS-nD3dPUwns1JjBalE6BWv27rBru4Y5dh0QBVrG6XbTjCoWI8tH3ra98i5EbwywBR27dC3mlZ4WJxtz_qYrIzaJqNX2jtndJK0Rk5rntH5Fq2D__wyMck3_xVcfksyKuoKBdZtVhdbpYOPMZhBroP9UGEjKciftOVf2tmebq1TUUmXQr4ElANQCqLFb-mMdfE</recordid><startdate>20170616</startdate><enddate>20170616</enddate><creator>Middleton, Elizabeth M.</creator><creator>Rascher, Uwe</creator><creator>Corp, Lawrence A.</creator><creator>Huemmrich, K. Fred</creator><creator>Cook, Bruce D.</creator><creator>Noormets, Asko</creator><creator>Schickling, Anke</creator><creator>Pinto, Francisco</creator><creator>Alonso, Luis</creator><creator>Damm, Alexander</creator><creator>Guanter, Luis</creator><creator>Colombo, Roberto</creator><creator>Campbell, Petya K. E.</creator><creator>Landis, David R.</creator><creator>Zhang, Qingyuan</creator><creator>Rossini, Micol</creator><creator>Schuettemeyer, Dirk</creator><creator>Bianchi, Remo</creator><general>MDPI AG</general><general>MDPI</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6052-3140</orcidid><orcidid>https://orcid.org/0000-0002-9993-4588</orcidid><orcidid>https://orcid.org/0000000174467752</orcidid></search><sort><creationdate>20170616</creationdate><title>The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA</title><author>Middleton, Elizabeth M. ; Rascher, Uwe ; Corp, Lawrence A. ; Huemmrich, K. Fred ; Cook, Bruce D. ; Noormets, Asko ; Schickling, Anke ; Pinto, Francisco ; Alonso, Luis ; Damm, Alexander ; Guanter, Luis ; Colombo, Roberto ; Campbell, Petya K. E. ; Landis, David R. ; Zhang, Qingyuan ; Rossini, Micol ; Schuettemeyer, Dirk ; Bianchi, Remo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-30da758563b5b21736b01a286ac8b92042d387fd1dd377e974e02a3b8fd8c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air temperature</topic><topic>Airborne instruments</topic><topic>Aircraft</topic><topic>Canopies</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>chlorophyll fluorescence</topic><topic>Coniferous forests</topic><topic>Diurnal</topic><topic>diurnal responses</topic><topic>Diurnal variations</topic><topic>Earth Resources And Remote Sensing</topic><topic>far-red SIF</topic><topic>Fluorescence</topic><topic>Fluxes</topic><topic>Forests</topic><topic>Fratio</topic><topic>G-LiHT</topic><topic>GEP</topic><topic>HyPlant</topic><topic>Infrared spectra</topic><topic>Instrument packages</topic><topic>Laboratories</topic><topic>Lidar</topic><topic>LUE</topic><topic>OTHER INSTRUMENTATION</topic><topic>Photochemicals</topic><topic>Pine trees</topic><topic>Plantations</topic><topic>red SIF</topic><topic>Reflectance</topic><topic>Remote Sensing</topic><topic>Sensors</topic><topic>Short wave radiation</topic><topic>SIF ratio</topic><topic>Simulation</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Structure-function relationships</topic><topic>Surface temperature</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Middleton, Elizabeth M.</creatorcontrib><creatorcontrib>Rascher, Uwe</creatorcontrib><creatorcontrib>Corp, Lawrence A.</creatorcontrib><creatorcontrib>Huemmrich, K. Fred</creatorcontrib><creatorcontrib>Cook, Bruce D.</creatorcontrib><creatorcontrib>Noormets, Asko</creatorcontrib><creatorcontrib>Schickling, Anke</creatorcontrib><creatorcontrib>Pinto, Francisco</creatorcontrib><creatorcontrib>Alonso, Luis</creatorcontrib><creatorcontrib>Damm, Alexander</creatorcontrib><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Colombo, Roberto</creatorcontrib><creatorcontrib>Campbell, Petya K. E.</creatorcontrib><creatorcontrib>Landis, David R.</creatorcontrib><creatorcontrib>Zhang, Qingyuan</creatorcontrib><creatorcontrib>Rossini, Micol</creatorcontrib><creatorcontrib>Schuettemeyer, Dirk</creatorcontrib><creatorcontrib>Bianchi, Remo</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Middleton, Elizabeth M.</au><au>Rascher, Uwe</au><au>Corp, Lawrence A.</au><au>Huemmrich, K. Fred</au><au>Cook, Bruce D.</au><au>Noormets, Asko</au><au>Schickling, Anke</au><au>Pinto, Francisco</au><au>Alonso, Luis</au><au>Damm, Alexander</au><au>Guanter, Luis</au><au>Colombo, Roberto</au><au>Campbell, Petya K. E.</au><au>Landis, David R.</au><au>Zhang, Qingyuan</au><au>Rossini, Micol</au><au>Schuettemeyer, Dirk</au><au>Bianchi, Remo</au><aucorp>North Carolina State University, Raleigh, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2017-06-16</date><risdate>2017</risdate><volume>9</volume><issue>6</issue><spage>612</spage><pages>612-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest.</abstract><cop>Goddard Space Flight Center</cop><pub>MDPI AG</pub><doi>10.3390/rs9060612</doi><orcidid>https://orcid.org/0000-0002-6052-3140</orcidid><orcidid>https://orcid.org/0000-0002-9993-4588</orcidid><orcidid>https://orcid.org/0000000174467752</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote sensing (Basel, Switzerland), 2017-06, Vol.9 (6), p.612
issn 2072-4292
2072-4292
language eng
recordid cdi_osti_scitechconnect_1537157
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; NASA Technical Reports Server
subjects Air temperature
Airborne instruments
Aircraft
Canopies
Carbon cycle
Carbon dioxide
chlorophyll fluorescence
Coniferous forests
Diurnal
diurnal responses
Diurnal variations
Earth Resources And Remote Sensing
far-red SIF
Fluorescence
Fluxes
Forests
Fratio
G-LiHT
GEP
HyPlant
Infrared spectra
Instrument packages
Laboratories
Lidar
LUE
OTHER INSTRUMENTATION
Photochemicals
Pine trees
Plantations
red SIF
Reflectance
Remote Sensing
Sensors
Short wave radiation
SIF ratio
Simulation
Spectrum analysis
Statistical analysis
Structure-function relationships
Surface temperature
Temperature effects
Temperature gradients
Vegetation
title The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%202013%20FLEX-US%20Airborne%20Campaign%20at%20the%20Parker%20Tract%20Loblolly%20Pine%20Plantation%20in%20North%20Carolina,%20USA&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Middleton,%20Elizabeth%20M.&rft.aucorp=North%20Carolina%20State%20University,%20Raleigh,%20NC%20(United%20States)&rft.date=2017-06-16&rft.volume=9&rft.issue=6&rft.spage=612&rft.pages=612-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs9060612&rft_dat=%3Cproquest_osti_%3E2195439358%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195439358&rft_id=info:pmid/&rfr_iscdi=true