The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA
The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). Thi...
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2017-06, Vol.9 (6), p.612 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 612 |
container_title | Remote sensing (Basel, Switzerland) |
container_volume | 9 |
creator | Middleton, Elizabeth M. Rascher, Uwe Corp, Lawrence A. Huemmrich, K. Fred Cook, Bruce D. Noormets, Asko Schickling, Anke Pinto, Francisco Alonso, Luis Damm, Alexander Guanter, Luis Colombo, Roberto Campbell, Petya K. E. Landis, David R. Zhang, Qingyuan Rossini, Micol Schuettemeyer, Dirk Bianchi, Remo |
description | The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest. |
doi_str_mv | 10.3390/rs9060612 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1537157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2195439358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-30da758563b5b21736b01a286ac8b92042d387fd1dd377e974e02a3b8fd8c143</originalsourceid><addsrcrecordid>eNpN0E1LxDAQBuAiCop68O4h6EmwOsm0TXNcFr9g0YVdwVtI09SN1mRN4mH_vZEVcS4zh2eG4S2KEwpXiAKuQxTQQEPZTnHAgLOyYoLt_pv3i-MY3yAXIhVQHRTDcmUIA4rkdnbzUj4vyMSGzgdnyFR9rJV9dUQlkrKaq_BuAlkGpROZ-W7047ghc5vpfFQuqWS9I9aRRx_SKq8HP1qnLsnzYnJU7A1qjOb4tx8Wy9ub5fS-nD3dPUwns1JjBalE6BWv27rBru4Y5dh0QBVrG6XbTjCoWI8tH3ra98i5EbwywBR27dC3mlZ4WJxtz_qYrIzaJqNX2jtndJK0Rk5rntH5Fq2D__wyMck3_xVcfksyKuoKBdZtVhdbpYOPMZhBroP9UGEjKciftOVf2tmebq1TUUmXQr4ElANQCqLFb-mMdfE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2195439358</pqid></control><display><type>article</type><title>The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>NASA Technical Reports Server</source><creator>Middleton, Elizabeth M. ; Rascher, Uwe ; Corp, Lawrence A. ; Huemmrich, K. Fred ; Cook, Bruce D. ; Noormets, Asko ; Schickling, Anke ; Pinto, Francisco ; Alonso, Luis ; Damm, Alexander ; Guanter, Luis ; Colombo, Roberto ; Campbell, Petya K. E. ; Landis, David R. ; Zhang, Qingyuan ; Rossini, Micol ; Schuettemeyer, Dirk ; Bianchi, Remo</creator><creatorcontrib>Middleton, Elizabeth M. ; Rascher, Uwe ; Corp, Lawrence A. ; Huemmrich, K. Fred ; Cook, Bruce D. ; Noormets, Asko ; Schickling, Anke ; Pinto, Francisco ; Alonso, Luis ; Damm, Alexander ; Guanter, Luis ; Colombo, Roberto ; Campbell, Petya K. E. ; Landis, David R. ; Zhang, Qingyuan ; Rossini, Micol ; Schuettemeyer, Dirk ; Bianchi, Remo ; North Carolina State University, Raleigh, NC (United States)</creatorcontrib><description>The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><identifier>DOI: 10.3390/rs9060612</identifier><language>eng</language><publisher>Goddard Space Flight Center: MDPI AG</publisher><subject>Air temperature ; Airborne instruments ; Aircraft ; Canopies ; Carbon cycle ; Carbon dioxide ; chlorophyll fluorescence ; Coniferous forests ; Diurnal ; diurnal responses ; Diurnal variations ; Earth Resources And Remote Sensing ; far-red SIF ; Fluorescence ; Fluxes ; Forests ; Fratio ; G-LiHT ; GEP ; HyPlant ; Infrared spectra ; Instrument packages ; Laboratories ; Lidar ; LUE ; OTHER INSTRUMENTATION ; Photochemicals ; Pine trees ; Plantations ; red SIF ; Reflectance ; Remote Sensing ; Sensors ; Short wave radiation ; SIF ratio ; Simulation ; Spectrum analysis ; Statistical analysis ; Structure-function relationships ; Surface temperature ; Temperature effects ; Temperature gradients ; Vegetation</subject><ispartof>Remote sensing (Basel, Switzerland), 2017-06, Vol.9 (6), p.612</ispartof><rights>2017. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-30da758563b5b21736b01a286ac8b92042d387fd1dd377e974e02a3b8fd8c143</citedby><cites>FETCH-LOGICAL-c340t-30da758563b5b21736b01a286ac8b92042d387fd1dd377e974e02a3b8fd8c143</cites><orcidid>0000-0002-6052-3140 ; 0000-0002-9993-4588 ; 0000000174467752</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,861,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1537157$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Middleton, Elizabeth M.</creatorcontrib><creatorcontrib>Rascher, Uwe</creatorcontrib><creatorcontrib>Corp, Lawrence A.</creatorcontrib><creatorcontrib>Huemmrich, K. Fred</creatorcontrib><creatorcontrib>Cook, Bruce D.</creatorcontrib><creatorcontrib>Noormets, Asko</creatorcontrib><creatorcontrib>Schickling, Anke</creatorcontrib><creatorcontrib>Pinto, Francisco</creatorcontrib><creatorcontrib>Alonso, Luis</creatorcontrib><creatorcontrib>Damm, Alexander</creatorcontrib><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Colombo, Roberto</creatorcontrib><creatorcontrib>Campbell, Petya K. E.</creatorcontrib><creatorcontrib>Landis, David R.</creatorcontrib><creatorcontrib>Zhang, Qingyuan</creatorcontrib><creatorcontrib>Rossini, Micol</creatorcontrib><creatorcontrib>Schuettemeyer, Dirk</creatorcontrib><creatorcontrib>Bianchi, Remo</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><title>The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA</title><title>Remote sensing (Basel, Switzerland)</title><description>The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest.</description><subject>Air temperature</subject><subject>Airborne instruments</subject><subject>Aircraft</subject><subject>Canopies</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>chlorophyll fluorescence</subject><subject>Coniferous forests</subject><subject>Diurnal</subject><subject>diurnal responses</subject><subject>Diurnal variations</subject><subject>Earth Resources And Remote Sensing</subject><subject>far-red SIF</subject><subject>Fluorescence</subject><subject>Fluxes</subject><subject>Forests</subject><subject>Fratio</subject><subject>G-LiHT</subject><subject>GEP</subject><subject>HyPlant</subject><subject>Infrared spectra</subject><subject>Instrument packages</subject><subject>Laboratories</subject><subject>Lidar</subject><subject>LUE</subject><subject>OTHER INSTRUMENTATION</subject><subject>Photochemicals</subject><subject>Pine trees</subject><subject>Plantations</subject><subject>red SIF</subject><subject>Reflectance</subject><subject>Remote Sensing</subject><subject>Sensors</subject><subject>Short wave radiation</subject><subject>SIF ratio</subject><subject>Simulation</subject><subject>Spectrum analysis</subject><subject>Statistical analysis</subject><subject>Structure-function relationships</subject><subject>Surface temperature</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Vegetation</subject><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpN0E1LxDAQBuAiCop68O4h6EmwOsm0TXNcFr9g0YVdwVtI09SN1mRN4mH_vZEVcS4zh2eG4S2KEwpXiAKuQxTQQEPZTnHAgLOyYoLt_pv3i-MY3yAXIhVQHRTDcmUIA4rkdnbzUj4vyMSGzgdnyFR9rJV9dUQlkrKaq_BuAlkGpROZ-W7047ghc5vpfFQuqWS9I9aRRx_SKq8HP1qnLsnzYnJU7A1qjOb4tx8Wy9ub5fS-nD3dPUwns1JjBalE6BWv27rBru4Y5dh0QBVrG6XbTjCoWI8tH3ra98i5EbwywBR27dC3mlZ4WJxtz_qYrIzaJqNX2jtndJK0Rk5rntH5Fq2D__wyMck3_xVcfksyKuoKBdZtVhdbpYOPMZhBroP9UGEjKciftOVf2tmebq1TUUmXQr4ElANQCqLFb-mMdfE</recordid><startdate>20170616</startdate><enddate>20170616</enddate><creator>Middleton, Elizabeth M.</creator><creator>Rascher, Uwe</creator><creator>Corp, Lawrence A.</creator><creator>Huemmrich, K. Fred</creator><creator>Cook, Bruce D.</creator><creator>Noormets, Asko</creator><creator>Schickling, Anke</creator><creator>Pinto, Francisco</creator><creator>Alonso, Luis</creator><creator>Damm, Alexander</creator><creator>Guanter, Luis</creator><creator>Colombo, Roberto</creator><creator>Campbell, Petya K. E.</creator><creator>Landis, David R.</creator><creator>Zhang, Qingyuan</creator><creator>Rossini, Micol</creator><creator>Schuettemeyer, Dirk</creator><creator>Bianchi, Remo</creator><general>MDPI AG</general><general>MDPI</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6052-3140</orcidid><orcidid>https://orcid.org/0000-0002-9993-4588</orcidid><orcidid>https://orcid.org/0000000174467752</orcidid></search><sort><creationdate>20170616</creationdate><title>The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA</title><author>Middleton, Elizabeth M. ; Rascher, Uwe ; Corp, Lawrence A. ; Huemmrich, K. Fred ; Cook, Bruce D. ; Noormets, Asko ; Schickling, Anke ; Pinto, Francisco ; Alonso, Luis ; Damm, Alexander ; Guanter, Luis ; Colombo, Roberto ; Campbell, Petya K. E. ; Landis, David R. ; Zhang, Qingyuan ; Rossini, Micol ; Schuettemeyer, Dirk ; Bianchi, Remo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-30da758563b5b21736b01a286ac8b92042d387fd1dd377e974e02a3b8fd8c143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Air temperature</topic><topic>Airborne instruments</topic><topic>Aircraft</topic><topic>Canopies</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>chlorophyll fluorescence</topic><topic>Coniferous forests</topic><topic>Diurnal</topic><topic>diurnal responses</topic><topic>Diurnal variations</topic><topic>Earth Resources And Remote Sensing</topic><topic>far-red SIF</topic><topic>Fluorescence</topic><topic>Fluxes</topic><topic>Forests</topic><topic>Fratio</topic><topic>G-LiHT</topic><topic>GEP</topic><topic>HyPlant</topic><topic>Infrared spectra</topic><topic>Instrument packages</topic><topic>Laboratories</topic><topic>Lidar</topic><topic>LUE</topic><topic>OTHER INSTRUMENTATION</topic><topic>Photochemicals</topic><topic>Pine trees</topic><topic>Plantations</topic><topic>red SIF</topic><topic>Reflectance</topic><topic>Remote Sensing</topic><topic>Sensors</topic><topic>Short wave radiation</topic><topic>SIF ratio</topic><topic>Simulation</topic><topic>Spectrum analysis</topic><topic>Statistical analysis</topic><topic>Structure-function relationships</topic><topic>Surface temperature</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Middleton, Elizabeth M.</creatorcontrib><creatorcontrib>Rascher, Uwe</creatorcontrib><creatorcontrib>Corp, Lawrence A.</creatorcontrib><creatorcontrib>Huemmrich, K. Fred</creatorcontrib><creatorcontrib>Cook, Bruce D.</creatorcontrib><creatorcontrib>Noormets, Asko</creatorcontrib><creatorcontrib>Schickling, Anke</creatorcontrib><creatorcontrib>Pinto, Francisco</creatorcontrib><creatorcontrib>Alonso, Luis</creatorcontrib><creatorcontrib>Damm, Alexander</creatorcontrib><creatorcontrib>Guanter, Luis</creatorcontrib><creatorcontrib>Colombo, Roberto</creatorcontrib><creatorcontrib>Campbell, Petya K. E.</creatorcontrib><creatorcontrib>Landis, David R.</creatorcontrib><creatorcontrib>Zhang, Qingyuan</creatorcontrib><creatorcontrib>Rossini, Micol</creatorcontrib><creatorcontrib>Schuettemeyer, Dirk</creatorcontrib><creatorcontrib>Bianchi, Remo</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Remote sensing (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Middleton, Elizabeth M.</au><au>Rascher, Uwe</au><au>Corp, Lawrence A.</au><au>Huemmrich, K. Fred</au><au>Cook, Bruce D.</au><au>Noormets, Asko</au><au>Schickling, Anke</au><au>Pinto, Francisco</au><au>Alonso, Luis</au><au>Damm, Alexander</au><au>Guanter, Luis</au><au>Colombo, Roberto</au><au>Campbell, Petya K. E.</au><au>Landis, David R.</au><au>Zhang, Qingyuan</au><au>Rossini, Micol</au><au>Schuettemeyer, Dirk</au><au>Bianchi, Remo</au><aucorp>North Carolina State University, Raleigh, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA</atitle><jtitle>Remote sensing (Basel, Switzerland)</jtitle><date>2017-06-16</date><risdate>2017</risdate><volume>9</volume><issue>6</issue><spage>612</spage><pages>612-</pages><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>The first European Space Agency (ESA) and NASA collaboration in an airborne campaign to support ESA's FLuorescence EXplorer (FLEX) mission was conducted in North Carolina, USA during September-October 2013 (FLEX-US 2013) at the Parker Tract Loblolly Pine (LP) Plantation (Plymouth, NC, USA). This campaign combined two unique airborne instrument packages to obtain simultaneous observations of solar-induced fluorescence (SIF), LiDAR-based canopy structural information, visible through shortwave infrared (VSWIR) reflectance spectra, and surface temperature, to advance vegetation studies of carbon cycle dynamics and ecosystem health. We obtained statistically significant results for fluorescence, canopy temperature, and tower fluxes from data collected at four times of day over two consecutive autumn days across an age class chronosequence. Both the red fluorescence (F685) and far-red fluorescence (F740) radiances had highest values at mid-day, but their fluorescence yields exhibited different diurnal responses across LP age classes. The diurnal trends for F685 varied with forest canopy temperature difference (canopy minus air), having a stronger daily amplitude change for young vs. old canopies. The Photochemical Reflectance Index (PRI) was positively correlated with this temperature variable over the diurnal cycle. Tower measurements from mature loblolly stand showed the red/far-red fluorescence ratio was linearly related to canopy light use efficiency (LUE) over the diurnal cycle, but performed even better for the combined morning/afternoon (without midday) observations. This study demonstrates the importance of diurnal observations for interpretation of fluorescence dynamics, the need for red fluorescence to understand canopy physiological processes, and the benefits of combining fluorescence, reflectance, and structure information to clarify canopy function versus structure characteristics for a coniferous forest.</abstract><cop>Goddard Space Flight Center</cop><pub>MDPI AG</pub><doi>10.3390/rs9060612</doi><orcidid>https://orcid.org/0000-0002-6052-3140</orcidid><orcidid>https://orcid.org/0000-0002-9993-4588</orcidid><orcidid>https://orcid.org/0000000174467752</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote sensing (Basel, Switzerland), 2017-06, Vol.9 (6), p.612 |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_osti_scitechconnect_1537157 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; NASA Technical Reports Server |
subjects | Air temperature Airborne instruments Aircraft Canopies Carbon cycle Carbon dioxide chlorophyll fluorescence Coniferous forests Diurnal diurnal responses Diurnal variations Earth Resources And Remote Sensing far-red SIF Fluorescence Fluxes Forests Fratio G-LiHT GEP HyPlant Infrared spectra Instrument packages Laboratories Lidar LUE OTHER INSTRUMENTATION Photochemicals Pine trees Plantations red SIF Reflectance Remote Sensing Sensors Short wave radiation SIF ratio Simulation Spectrum analysis Statistical analysis Structure-function relationships Surface temperature Temperature effects Temperature gradients Vegetation |
title | The 2013 FLEX-US Airborne Campaign at the Parker Tract Loblolly Pine Plantation in North Carolina, USA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%202013%20FLEX-US%20Airborne%20Campaign%20at%20the%20Parker%20Tract%20Loblolly%20Pine%20Plantation%20in%20North%20Carolina,%20USA&rft.jtitle=Remote%20sensing%20(Basel,%20Switzerland)&rft.au=Middleton,%20Elizabeth%20M.&rft.aucorp=North%20Carolina%20State%20University,%20Raleigh,%20NC%20(United%20States)&rft.date=2017-06-16&rft.volume=9&rft.issue=6&rft.spage=612&rft.pages=612-&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/10.3390/rs9060612&rft_dat=%3Cproquest_osti_%3E2195439358%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2195439358&rft_id=info:pmid/&rfr_iscdi=true |