Exploring the Sensitivity of Photosynthesis and Stomatal Resistance Parameters in a Land Surface Model

Land surface models, like the Common LandModel component of the ParFlow integrated hydrologic model (PF-CLM), are used to estimate transpiration from vegetated surfaces. Transpiration rates quantify how much water moves from the subsurface through the plant and into the atmosphere. This rate is cont...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrometeorology 2017-03, Vol.18 (3), p.897-915
Hauptverfasser: Jefferson, Jennifer L., Maxwell, Reed M., Constantine, Paul G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 915
container_issue 3
container_start_page 897
container_title Journal of hydrometeorology
container_volume 18
creator Jefferson, Jennifer L.
Maxwell, Reed M.
Constantine, Paul G.
description Land surface models, like the Common LandModel component of the ParFlow integrated hydrologic model (PF-CLM), are used to estimate transpiration from vegetated surfaces. Transpiration rates quantify how much water moves from the subsurface through the plant and into the atmosphere. This rate is controlled by the stomatal resistance term in land surface models. The Ball–Berry stomatal resistance parameterization relies, in part, on the rate of photosynthesis, and together these equations require the specification of 20 input parameters. Here, the active subspace method is applied to 2100 year-long PF-CLM simulations, forced by atmospheric data from California,Colorado, and Oklahoma, to identify which input parameters are important and how they relate to three quantities of interest: transpiration, stomatal resistance from the sunlit portion of the canopy, and stomatal resistance from the shaded portion. The slope (mp) and intercept (bp) parameters associated with the Ball–Berry parameterization are consistently important for all locations, along with five parameters associated with ribulose bisphosphate carboxylase/oxygenase (RuBisCO)- and light-limited rates of photosynthesis [CO₂ Michaelis–Menten constant at 25°C (kc25), maximum ratio of oxygenation to carboxylation (ocr), quantum efficiency at 25°C (qe25), maximum rate of carboxylation at 25°C (vcmx25), and multiplier in the denominator of the equation used to compute the light-limited rate of photosynthesis (wj1)]. The importance of these input parameters, quantified by the active variable weight, and the relationship between the input parameters and quantities of interest vary seasonally and diurnally. Input parameter values influence transpiration rates most during midday, summertime hours when fluxes are large. This research informs model users about which photosynthesis and stomatal resistance parameters should be more carefully selected. Quantifying sensitivities associated with the stomatal resistance term is necessary to better understand transpiration estimates from land surface models.
doi_str_mv 10.1175/JHM-D-16-0053.1
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1537027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26152618</jstor_id><sourcerecordid>26152618</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-81537af70ba56ab7287c7f4257b41a07c2d2121a288ddfb322dfbf9e0fec66943</originalsourceid><addsrcrecordid>eNo9kMtLAzEQxhdR8Hn2JAQ9b81kN5vdo2h90WLxAd5CNpvYlG1Sk1Tsf2_WipeZYb7ffAxflp0CHgEwevl4P81vcqhyjGkxgp3sACihOaMl7P7P9H0_OwxhgTEuG6gPMj3-XvXOG_uB4lyhF2WDiebLxA1yGs3mLrqwsUkKJiBhO_QS3VJE0aPnYRWFlQrNhBdLFZUPyFgk0OQXXHstkjh1neqPsz0t-qBO_vpR9nY7fr2-zydPdw_XV5NckrqJeQ20YEIz3ApaiZaRmkmmS0JZW4LATJKOAAFB6rrrdFsQkqpuFNZKVlVTFkfZ-dbXhWh4kCYqOZfOWiUjH8wxYQm62EIr7z7XKkS-cGtv018cGlLWFJdlk6jLLSW9C8ErzVfeLIXfcMB8SJynxPkNh4oPiXNIF2fbi0WIzv_jpErhV1AXP7kTfeM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924850449</pqid></control><display><type>article</type><title>Exploring the Sensitivity of Photosynthesis and Stomatal Resistance Parameters in a Land Surface Model</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Archive Collection A-Z Listing</source><source>Alma/SFX Local Collection</source><creator>Jefferson, Jennifer L. ; Maxwell, Reed M. ; Constantine, Paul G.</creator><creatorcontrib>Jefferson, Jennifer L. ; Maxwell, Reed M. ; Constantine, Paul G. ; Colorado School of Mines, Golden, CO (United States)</creatorcontrib><description>Land surface models, like the Common LandModel component of the ParFlow integrated hydrologic model (PF-CLM), are used to estimate transpiration from vegetated surfaces. Transpiration rates quantify how much water moves from the subsurface through the plant and into the atmosphere. This rate is controlled by the stomatal resistance term in land surface models. The Ball–Berry stomatal resistance parameterization relies, in part, on the rate of photosynthesis, and together these equations require the specification of 20 input parameters. Here, the active subspace method is applied to 2100 year-long PF-CLM simulations, forced by atmospheric data from California,Colorado, and Oklahoma, to identify which input parameters are important and how they relate to three quantities of interest: transpiration, stomatal resistance from the sunlit portion of the canopy, and stomatal resistance from the shaded portion. The slope (mp) and intercept (bp) parameters associated with the Ball–Berry parameterization are consistently important for all locations, along with five parameters associated with ribulose bisphosphate carboxylase/oxygenase (RuBisCO)- and light-limited rates of photosynthesis [CO₂ Michaelis–Menten constant at 25°C (kc25), maximum ratio of oxygenation to carboxylation (ocr), quantum efficiency at 25°C (qe25), maximum rate of carboxylation at 25°C (vcmx25), and multiplier in the denominator of the equation used to compute the light-limited rate of photosynthesis (wj1)]. The importance of these input parameters, quantified by the active variable weight, and the relationship between the input parameters and quantities of interest vary seasonally and diurnally. Input parameter values influence transpiration rates most during midday, summertime hours when fluxes are large. This research informs model users about which photosynthesis and stomatal resistance parameters should be more carefully selected. Quantifying sensitivities associated with the stomatal resistance term is necessary to better understand transpiration estimates from land surface models.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/JHM-D-16-0053.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Applied mathematics ; Atmosphere ; Atmospheric data ; Atmospheric models ; Carbon dioxide ; Carboxylation ; Computer simulation ; Engineering ; Fluxes ; Fruits ; Geological engineering ; Heat ; Hydrologic models ; Hydrologic sciences ; Hydrology ; Land surface models ; Leaves ; Mathematical models ; Methods ; Model evaluation/performance ; Nitrogen ; Oxygenase ; Oxygenation ; Parameter identification ; Parameter sensitivity ; Parameterization ; Parameters ; Photosynthesis ; Plant cover ; Quantum efficiency ; Ribulose-bisphosphate carboxylase ; Sensitivity ; Sensitivity analysis ; Sensitivity studies ; Stomata ; Subspace methods ; Transpiration ; Vegetation</subject><ispartof>Journal of hydrometeorology, 2017-03, Vol.18 (3), p.897-915</ispartof><rights>2017 American Meteorological Society</rights><rights>Copyright American Meteorological Society Mar 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-81537af70ba56ab7287c7f4257b41a07c2d2121a288ddfb322dfbf9e0fec66943</citedby><cites>FETCH-LOGICAL-c289t-81537af70ba56ab7287c7f4257b41a07c2d2121a288ddfb322dfbf9e0fec66943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26152618$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26152618$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1537027$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jefferson, Jennifer L.</creatorcontrib><creatorcontrib>Maxwell, Reed M.</creatorcontrib><creatorcontrib>Constantine, Paul G.</creatorcontrib><creatorcontrib>Colorado School of Mines, Golden, CO (United States)</creatorcontrib><title>Exploring the Sensitivity of Photosynthesis and Stomatal Resistance Parameters in a Land Surface Model</title><title>Journal of hydrometeorology</title><description>Land surface models, like the Common LandModel component of the ParFlow integrated hydrologic model (PF-CLM), are used to estimate transpiration from vegetated surfaces. Transpiration rates quantify how much water moves from the subsurface through the plant and into the atmosphere. This rate is controlled by the stomatal resistance term in land surface models. The Ball–Berry stomatal resistance parameterization relies, in part, on the rate of photosynthesis, and together these equations require the specification of 20 input parameters. Here, the active subspace method is applied to 2100 year-long PF-CLM simulations, forced by atmospheric data from California,Colorado, and Oklahoma, to identify which input parameters are important and how they relate to three quantities of interest: transpiration, stomatal resistance from the sunlit portion of the canopy, and stomatal resistance from the shaded portion. The slope (mp) and intercept (bp) parameters associated with the Ball–Berry parameterization are consistently important for all locations, along with five parameters associated with ribulose bisphosphate carboxylase/oxygenase (RuBisCO)- and light-limited rates of photosynthesis [CO₂ Michaelis–Menten constant at 25°C (kc25), maximum ratio of oxygenation to carboxylation (ocr), quantum efficiency at 25°C (qe25), maximum rate of carboxylation at 25°C (vcmx25), and multiplier in the denominator of the equation used to compute the light-limited rate of photosynthesis (wj1)]. The importance of these input parameters, quantified by the active variable weight, and the relationship between the input parameters and quantities of interest vary seasonally and diurnally. Input parameter values influence transpiration rates most during midday, summertime hours when fluxes are large. This research informs model users about which photosynthesis and stomatal resistance parameters should be more carefully selected. Quantifying sensitivities associated with the stomatal resistance term is necessary to better understand transpiration estimates from land surface models.</description><subject>Applied mathematics</subject><subject>Atmosphere</subject><subject>Atmospheric data</subject><subject>Atmospheric models</subject><subject>Carbon dioxide</subject><subject>Carboxylation</subject><subject>Computer simulation</subject><subject>Engineering</subject><subject>Fluxes</subject><subject>Fruits</subject><subject>Geological engineering</subject><subject>Heat</subject><subject>Hydrologic models</subject><subject>Hydrologic sciences</subject><subject>Hydrology</subject><subject>Land surface models</subject><subject>Leaves</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Model evaluation/performance</subject><subject>Nitrogen</subject><subject>Oxygenase</subject><subject>Oxygenation</subject><subject>Parameter identification</subject><subject>Parameter sensitivity</subject><subject>Parameterization</subject><subject>Parameters</subject><subject>Photosynthesis</subject><subject>Plant cover</subject><subject>Quantum efficiency</subject><subject>Ribulose-bisphosphate carboxylase</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Sensitivity studies</subject><subject>Stomata</subject><subject>Subspace methods</subject><subject>Transpiration</subject><subject>Vegetation</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNo9kMtLAzEQxhdR8Hn2JAQ9b81kN5vdo2h90WLxAd5CNpvYlG1Sk1Tsf2_WipeZYb7ffAxflp0CHgEwevl4P81vcqhyjGkxgp3sACihOaMl7P7P9H0_OwxhgTEuG6gPMj3-XvXOG_uB4lyhF2WDiebLxA1yGs3mLrqwsUkKJiBhO_QS3VJE0aPnYRWFlQrNhBdLFZUPyFgk0OQXXHstkjh1neqPsz0t-qBO_vpR9nY7fr2-zydPdw_XV5NckrqJeQ20YEIz3ApaiZaRmkmmS0JZW4LATJKOAAFB6rrrdFsQkqpuFNZKVlVTFkfZ-dbXhWh4kCYqOZfOWiUjH8wxYQm62EIr7z7XKkS-cGtv018cGlLWFJdlk6jLLSW9C8ErzVfeLIXfcMB8SJynxPkNh4oPiXNIF2fbi0WIzv_jpErhV1AXP7kTfeM</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Jefferson, Jennifer L.</creator><creator>Maxwell, Reed M.</creator><creator>Constantine, Paul G.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170301</creationdate><title>Exploring the Sensitivity of Photosynthesis and Stomatal Resistance Parameters in a Land Surface Model</title><author>Jefferson, Jennifer L. ; Maxwell, Reed M. ; Constantine, Paul G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-81537af70ba56ab7287c7f4257b41a07c2d2121a288ddfb322dfbf9e0fec66943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied mathematics</topic><topic>Atmosphere</topic><topic>Atmospheric data</topic><topic>Atmospheric models</topic><topic>Carbon dioxide</topic><topic>Carboxylation</topic><topic>Computer simulation</topic><topic>Engineering</topic><topic>Fluxes</topic><topic>Fruits</topic><topic>Geological engineering</topic><topic>Heat</topic><topic>Hydrologic models</topic><topic>Hydrologic sciences</topic><topic>Hydrology</topic><topic>Land surface models</topic><topic>Leaves</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Model evaluation/performance</topic><topic>Nitrogen</topic><topic>Oxygenase</topic><topic>Oxygenation</topic><topic>Parameter identification</topic><topic>Parameter sensitivity</topic><topic>Parameterization</topic><topic>Parameters</topic><topic>Photosynthesis</topic><topic>Plant cover</topic><topic>Quantum efficiency</topic><topic>Ribulose-bisphosphate carboxylase</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Sensitivity studies</topic><topic>Stomata</topic><topic>Subspace methods</topic><topic>Transpiration</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jefferson, Jennifer L.</creatorcontrib><creatorcontrib>Maxwell, Reed M.</creatorcontrib><creatorcontrib>Constantine, Paul G.</creatorcontrib><creatorcontrib>Colorado School of Mines, Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jefferson, Jennifer L.</au><au>Maxwell, Reed M.</au><au>Constantine, Paul G.</au><aucorp>Colorado School of Mines, Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring the Sensitivity of Photosynthesis and Stomatal Resistance Parameters in a Land Surface Model</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>18</volume><issue>3</issue><spage>897</spage><epage>915</epage><pages>897-915</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Land surface models, like the Common LandModel component of the ParFlow integrated hydrologic model (PF-CLM), are used to estimate transpiration from vegetated surfaces. Transpiration rates quantify how much water moves from the subsurface through the plant and into the atmosphere. This rate is controlled by the stomatal resistance term in land surface models. The Ball–Berry stomatal resistance parameterization relies, in part, on the rate of photosynthesis, and together these equations require the specification of 20 input parameters. Here, the active subspace method is applied to 2100 year-long PF-CLM simulations, forced by atmospheric data from California,Colorado, and Oklahoma, to identify which input parameters are important and how they relate to three quantities of interest: transpiration, stomatal resistance from the sunlit portion of the canopy, and stomatal resistance from the shaded portion. The slope (mp) and intercept (bp) parameters associated with the Ball–Berry parameterization are consistently important for all locations, along with five parameters associated with ribulose bisphosphate carboxylase/oxygenase (RuBisCO)- and light-limited rates of photosynthesis [CO₂ Michaelis–Menten constant at 25°C (kc25), maximum ratio of oxygenation to carboxylation (ocr), quantum efficiency at 25°C (qe25), maximum rate of carboxylation at 25°C (vcmx25), and multiplier in the denominator of the equation used to compute the light-limited rate of photosynthesis (wj1)]. The importance of these input parameters, quantified by the active variable weight, and the relationship between the input parameters and quantities of interest vary seasonally and diurnally. Input parameter values influence transpiration rates most during midday, summertime hours when fluxes are large. This research informs model users about which photosynthesis and stomatal resistance parameters should be more carefully selected. Quantifying sensitivities associated with the stomatal resistance term is necessary to better understand transpiration estimates from land surface models.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JHM-D-16-0053.1</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1525-755X
ispartof Journal of hydrometeorology, 2017-03, Vol.18 (3), p.897-915
issn 1525-755X
1525-7541
language eng
recordid cdi_osti_scitechconnect_1537027
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Archive Collection A-Z Listing; Alma/SFX Local Collection
subjects Applied mathematics
Atmosphere
Atmospheric data
Atmospheric models
Carbon dioxide
Carboxylation
Computer simulation
Engineering
Fluxes
Fruits
Geological engineering
Heat
Hydrologic models
Hydrologic sciences
Hydrology
Land surface models
Leaves
Mathematical models
Methods
Model evaluation/performance
Nitrogen
Oxygenase
Oxygenation
Parameter identification
Parameter sensitivity
Parameterization
Parameters
Photosynthesis
Plant cover
Quantum efficiency
Ribulose-bisphosphate carboxylase
Sensitivity
Sensitivity analysis
Sensitivity studies
Stomata
Subspace methods
Transpiration
Vegetation
title Exploring the Sensitivity of Photosynthesis and Stomatal Resistance Parameters in a Land Surface Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T05%3A31%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20the%20Sensitivity%20of%20Photosynthesis%20and%20Stomatal%20Resistance%20Parameters%20in%20a%20Land%20Surface%20Model&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Jefferson,%20Jennifer%20L.&rft.aucorp=Colorado%20School%20of%20Mines,%20Golden,%20CO%20(United%20States)&rft.date=2017-03-01&rft.volume=18&rft.issue=3&rft.spage=897&rft.epage=915&rft.pages=897-915&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/JHM-D-16-0053.1&rft_dat=%3Cjstor_osti_%3E26152618%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924850449&rft_id=info:pmid/&rft_jstor_id=26152618&rfr_iscdi=true