Modeling Condensation in Deep Convection

Cloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the atmospheric sciences 2017-07, Vol.74 (7), p.2247-2267
Hauptverfasser: Grabowski, Wojciech W., Morrison, Hugh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2267
container_issue 7
container_start_page 2247
container_title Journal of the atmospheric sciences
container_volume 74
creator Grabowski, Wojciech W.
Morrison, Hugh
description Cloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes. When super- or subsaturations are allowed, condensation/evaporation can be calculated using the predicted saturation ratio and (either predicted or prescribed) mean droplet radius and concentration. The study investigates differences between simulations of deep unorganized convection applying a saturation adjustment condensation scheme (SADJ) and a scheme with supersaturation prediction (SPRE). A double-moment microphysics scheme with CCN activation parameterized as a function of the local vertical velocity is applied to compare cloud fields simulated applying SPRE and SADJ. Clean CCN conditions are assumed to demonstrate upper limits of the SPRE and SADJ difference. Microphysical piggybacking is used to extract the impacts with confidence. Results show a significant impact on deep convection dynamics, with SADJ featuring more cloud buoyancy and thus stronger updrafts. This leads to around a 3% increase of the surface rain accumulation in SADJ. Upper-tropospheric anvil cloud fractions are much larger in SPRE than in SADJ because of the higher ice concentrations and thus longer residence times of anvil particles in SPRE, as demonstrated by sensitivity tests. Higher ice concentrations in SPRE come from significantly larger ice supersaturations in strong convective updrafts that feature water supersaturations of several percent.
doi_str_mv 10.1175/JAS-D-16-0255.1
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1536991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822761137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e3a5af0de448ba212b3858ee925e566173486c98a594a49c963a7881cacbd6d23</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKtrt0U3btLm5jXJsrQ-qbhQ1yGTuaNTajJOpoL_3hnq3Vw4fBwOHyGXwOYAhVo8LV_pmoKmjCs1hyMyAcUZZVLbYzJhjHMqLTen5CznLRuOFzAhN8-pwl0TP2arFCuM2fdNirMmztaI7Rj-YBijc3JS-13Gi_8_Je93t2-rB7p5uX9cLTc0SCZ6isIrX7MKpTSl58BLYZRBtFyh0hoKIY0O1nhlpZc2WC18YQwEH8pKV1xMydWhN-W-cTk0PYbPkGIcZjhQQlsLA3R9gNoufe8x926b9l0cdjluOC80gCgGanGgQpdy7rB2bdd8-e7XAXOjMzc4c2sH2o3OHIg_w7NcgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822761137</pqid></control><display><type>article</type><title>Modeling Condensation in Deep Convection</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Grabowski, Wojciech W. ; Morrison, Hugh</creator><creatorcontrib>Grabowski, Wojciech W. ; Morrison, Hugh ; University Corporation for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><description>Cloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes. When super- or subsaturations are allowed, condensation/evaporation can be calculated using the predicted saturation ratio and (either predicted or prescribed) mean droplet radius and concentration. The study investigates differences between simulations of deep unorganized convection applying a saturation adjustment condensation scheme (SADJ) and a scheme with supersaturation prediction (SPRE). A double-moment microphysics scheme with CCN activation parameterized as a function of the local vertical velocity is applied to compare cloud fields simulated applying SPRE and SADJ. Clean CCN conditions are assumed to demonstrate upper limits of the SPRE and SADJ difference. Microphysical piggybacking is used to extract the impacts with confidence. Results show a significant impact on deep convection dynamics, with SADJ featuring more cloud buoyancy and thus stronger updrafts. This leads to around a 3% increase of the surface rain accumulation in SADJ. Upper-tropospheric anvil cloud fractions are much larger in SPRE than in SADJ because of the higher ice concentrations and thus longer residence times of anvil particles in SPRE, as demonstrated by sensitivity tests. Higher ice concentrations in SPRE come from significantly larger ice supersaturations in strong convective updrafts that feature water supersaturations of several percent.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-16-0255.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Aerosols ; Anvil clouds ; Cloud droplets ; Clouds ; Condensation ; Convection ; Convection dynamics ; Convective clouds ; convective-scale processes ; Droplets ; ENVIRONMENTAL SCIENCES ; Evaporation ; glaciation ; Ice ; meteorology &amp; atmospheric sciences ; Microphysics ; Precipitation ; Raindrop velocity ; Saturation ; Scale models ; Simulation ; Supersaturation ; Temperature ; Updraft ; Vertical velocities ; Water vapor ; Water vapour</subject><ispartof>Journal of the atmospheric sciences, 2017-07, Vol.74 (7), p.2247-2267</ispartof><rights>Copyright American Meteorological Society 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e3a5af0de448ba212b3858ee925e566173486c98a594a49c963a7881cacbd6d23</citedby><cites>FETCH-LOGICAL-c403t-e3a5af0de448ba212b3858ee925e566173486c98a594a49c963a7881cacbd6d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3681,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1536991$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Grabowski, Wojciech W.</creatorcontrib><creatorcontrib>Morrison, Hugh</creatorcontrib><creatorcontrib>University Corporation for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><title>Modeling Condensation in Deep Convection</title><title>Journal of the atmospheric sciences</title><description>Cloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes. When super- or subsaturations are allowed, condensation/evaporation can be calculated using the predicted saturation ratio and (either predicted or prescribed) mean droplet radius and concentration. The study investigates differences between simulations of deep unorganized convection applying a saturation adjustment condensation scheme (SADJ) and a scheme with supersaturation prediction (SPRE). A double-moment microphysics scheme with CCN activation parameterized as a function of the local vertical velocity is applied to compare cloud fields simulated applying SPRE and SADJ. Clean CCN conditions are assumed to demonstrate upper limits of the SPRE and SADJ difference. Microphysical piggybacking is used to extract the impacts with confidence. Results show a significant impact on deep convection dynamics, with SADJ featuring more cloud buoyancy and thus stronger updrafts. This leads to around a 3% increase of the surface rain accumulation in SADJ. Upper-tropospheric anvil cloud fractions are much larger in SPRE than in SADJ because of the higher ice concentrations and thus longer residence times of anvil particles in SPRE, as demonstrated by sensitivity tests. Higher ice concentrations in SPRE come from significantly larger ice supersaturations in strong convective updrafts that feature water supersaturations of several percent.</description><subject>Aerosols</subject><subject>Anvil clouds</subject><subject>Cloud droplets</subject><subject>Clouds</subject><subject>Condensation</subject><subject>Convection</subject><subject>Convection dynamics</subject><subject>Convective clouds</subject><subject>convective-scale processes</subject><subject>Droplets</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Evaporation</subject><subject>glaciation</subject><subject>Ice</subject><subject>meteorology &amp; atmospheric sciences</subject><subject>Microphysics</subject><subject>Precipitation</subject><subject>Raindrop velocity</subject><subject>Saturation</subject><subject>Scale models</subject><subject>Simulation</subject><subject>Supersaturation</subject><subject>Temperature</subject><subject>Updraft</subject><subject>Vertical velocities</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEtLAzEUhYMoWKtrt0U3btLm5jXJsrQ-qbhQ1yGTuaNTajJOpoL_3hnq3Vw4fBwOHyGXwOYAhVo8LV_pmoKmjCs1hyMyAcUZZVLbYzJhjHMqLTen5CznLRuOFzAhN8-pwl0TP2arFCuM2fdNirMmztaI7Rj-YBijc3JS-13Gi_8_Je93t2-rB7p5uX9cLTc0SCZ6isIrX7MKpTSl58BLYZRBtFyh0hoKIY0O1nhlpZc2WC18YQwEH8pKV1xMydWhN-W-cTk0PYbPkGIcZjhQQlsLA3R9gNoufe8x926b9l0cdjluOC80gCgGanGgQpdy7rB2bdd8-e7XAXOjMzc4c2sH2o3OHIg_w7NcgQ</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Grabowski, Wojciech W.</creator><creator>Morrison, Hugh</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170701</creationdate><title>Modeling Condensation in Deep Convection</title><author>Grabowski, Wojciech W. ; Morrison, Hugh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e3a5af0de448ba212b3858ee925e566173486c98a594a49c963a7881cacbd6d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerosols</topic><topic>Anvil clouds</topic><topic>Cloud droplets</topic><topic>Clouds</topic><topic>Condensation</topic><topic>Convection</topic><topic>Convection dynamics</topic><topic>Convective clouds</topic><topic>convective-scale processes</topic><topic>Droplets</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Evaporation</topic><topic>glaciation</topic><topic>Ice</topic><topic>meteorology &amp; atmospheric sciences</topic><topic>Microphysics</topic><topic>Precipitation</topic><topic>Raindrop velocity</topic><topic>Saturation</topic><topic>Scale models</topic><topic>Simulation</topic><topic>Supersaturation</topic><topic>Temperature</topic><topic>Updraft</topic><topic>Vertical velocities</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabowski, Wojciech W.</creatorcontrib><creatorcontrib>Morrison, Hugh</creatorcontrib><creatorcontrib>University Corporation for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabowski, Wojciech W.</au><au>Morrison, Hugh</au><aucorp>University Corporation for Atmospheric Research, Boulder, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Condensation in Deep Convection</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>74</volume><issue>7</issue><spage>2247</spage><epage>2267</epage><pages>2247-2267</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>Cloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes. When super- or subsaturations are allowed, condensation/evaporation can be calculated using the predicted saturation ratio and (either predicted or prescribed) mean droplet radius and concentration. The study investigates differences between simulations of deep unorganized convection applying a saturation adjustment condensation scheme (SADJ) and a scheme with supersaturation prediction (SPRE). A double-moment microphysics scheme with CCN activation parameterized as a function of the local vertical velocity is applied to compare cloud fields simulated applying SPRE and SADJ. Clean CCN conditions are assumed to demonstrate upper limits of the SPRE and SADJ difference. Microphysical piggybacking is used to extract the impacts with confidence. Results show a significant impact on deep convection dynamics, with SADJ featuring more cloud buoyancy and thus stronger updrafts. This leads to around a 3% increase of the surface rain accumulation in SADJ. Upper-tropospheric anvil cloud fractions are much larger in SPRE than in SADJ because of the higher ice concentrations and thus longer residence times of anvil particles in SPRE, as demonstrated by sensitivity tests. Higher ice concentrations in SPRE come from significantly larger ice supersaturations in strong convective updrafts that feature water supersaturations of several percent.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-16-0255.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4928
ispartof Journal of the atmospheric sciences, 2017-07, Vol.74 (7), p.2247-2267
issn 0022-4928
1520-0469
language eng
recordid cdi_osti_scitechconnect_1536991
source American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Aerosols
Anvil clouds
Cloud droplets
Clouds
Condensation
Convection
Convection dynamics
Convective clouds
convective-scale processes
Droplets
ENVIRONMENTAL SCIENCES
Evaporation
glaciation
Ice
meteorology & atmospheric sciences
Microphysics
Precipitation
Raindrop velocity
Saturation
Scale models
Simulation
Supersaturation
Temperature
Updraft
Vertical velocities
Water vapor
Water vapour
title Modeling Condensation in Deep Convection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Condensation%20in%20Deep%20Convection&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Grabowski,%20Wojciech%20W.&rft.aucorp=University%20Corporation%20for%20Atmospheric%20Research,%20Boulder,%20CO%20(United%20States)&rft.date=2017-07-01&rft.volume=74&rft.issue=7&rft.spage=2247&rft.epage=2267&rft.pages=2247-2267&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-16-0255.1&rft_dat=%3Cproquest_osti_%3E2822761137%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822761137&rft_id=info:pmid/&rfr_iscdi=true