Modeling Condensation in Deep Convection
Cloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes....
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2017-07, Vol.74 (7), p.2247-2267 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2267 |
---|---|
container_issue | 7 |
container_start_page | 2247 |
container_title | Journal of the atmospheric sciences |
container_volume | 74 |
creator | Grabowski, Wojciech W. Morrison, Hugh |
description | Cloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes. When super- or subsaturations are allowed, condensation/evaporation can be calculated using the predicted saturation ratio and (either predicted or prescribed) mean droplet radius and concentration. The study investigates differences between simulations of deep unorganized convection applying a saturation adjustment condensation scheme (SADJ) and a scheme with supersaturation prediction (SPRE). A double-moment microphysics scheme with CCN activation parameterized as a function of the local vertical velocity is applied to compare cloud fields simulated applying SPRE and SADJ. Clean CCN conditions are assumed to demonstrate upper limits of the SPRE and SADJ difference. Microphysical piggybacking is used to extract the impacts with confidence. Results show a significant impact on deep convection dynamics, with SADJ featuring more cloud buoyancy and thus stronger updrafts. This leads to around a 3% increase of the surface rain accumulation in SADJ. Upper-tropospheric anvil cloud fractions are much larger in SPRE than in SADJ because of the higher ice concentrations and thus longer residence times of anvil particles in SPRE, as demonstrated by sensitivity tests. Higher ice concentrations in SPRE come from significantly larger ice supersaturations in strong convective updrafts that feature water supersaturations of several percent. |
doi_str_mv | 10.1175/JAS-D-16-0255.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1536991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2822761137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e3a5af0de448ba212b3858ee925e566173486c98a594a49c963a7881cacbd6d23</originalsourceid><addsrcrecordid>eNotkEtLAzEUhYMoWKtrt0U3btLm5jXJsrQ-qbhQ1yGTuaNTajJOpoL_3hnq3Vw4fBwOHyGXwOYAhVo8LV_pmoKmjCs1hyMyAcUZZVLbYzJhjHMqLTen5CznLRuOFzAhN8-pwl0TP2arFCuM2fdNirMmztaI7Rj-YBijc3JS-13Gi_8_Je93t2-rB7p5uX9cLTc0SCZ6isIrX7MKpTSl58BLYZRBtFyh0hoKIY0O1nhlpZc2WC18YQwEH8pKV1xMydWhN-W-cTk0PYbPkGIcZjhQQlsLA3R9gNoufe8x926b9l0cdjluOC80gCgGanGgQpdy7rB2bdd8-e7XAXOjMzc4c2sH2o3OHIg_w7NcgQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2822761137</pqid></control><display><type>article</type><title>Modeling Condensation in Deep Convection</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Grabowski, Wojciech W. ; Morrison, Hugh</creator><creatorcontrib>Grabowski, Wojciech W. ; Morrison, Hugh ; University Corporation for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><description>Cloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes. When super- or subsaturations are allowed, condensation/evaporation can be calculated using the predicted saturation ratio and (either predicted or prescribed) mean droplet radius and concentration. The study investigates differences between simulations of deep unorganized convection applying a saturation adjustment condensation scheme (SADJ) and a scheme with supersaturation prediction (SPRE). A double-moment microphysics scheme with CCN activation parameterized as a function of the local vertical velocity is applied to compare cloud fields simulated applying SPRE and SADJ. Clean CCN conditions are assumed to demonstrate upper limits of the SPRE and SADJ difference. Microphysical piggybacking is used to extract the impacts with confidence. Results show a significant impact on deep convection dynamics, with SADJ featuring more cloud buoyancy and thus stronger updrafts. This leads to around a 3% increase of the surface rain accumulation in SADJ. Upper-tropospheric anvil cloud fractions are much larger in SPRE than in SADJ because of the higher ice concentrations and thus longer residence times of anvil particles in SPRE, as demonstrated by sensitivity tests. Higher ice concentrations in SPRE come from significantly larger ice supersaturations in strong convective updrafts that feature water supersaturations of several percent.</description><identifier>ISSN: 0022-4928</identifier><identifier>EISSN: 1520-0469</identifier><identifier>DOI: 10.1175/JAS-D-16-0255.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Aerosols ; Anvil clouds ; Cloud droplets ; Clouds ; Condensation ; Convection ; Convection dynamics ; Convective clouds ; convective-scale processes ; Droplets ; ENVIRONMENTAL SCIENCES ; Evaporation ; glaciation ; Ice ; meteorology & atmospheric sciences ; Microphysics ; Precipitation ; Raindrop velocity ; Saturation ; Scale models ; Simulation ; Supersaturation ; Temperature ; Updraft ; Vertical velocities ; Water vapor ; Water vapour</subject><ispartof>Journal of the atmospheric sciences, 2017-07, Vol.74 (7), p.2247-2267</ispartof><rights>Copyright American Meteorological Society 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e3a5af0de448ba212b3858ee925e566173486c98a594a49c963a7881cacbd6d23</citedby><cites>FETCH-LOGICAL-c403t-e3a5af0de448ba212b3858ee925e566173486c98a594a49c963a7881cacbd6d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3681,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1536991$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Grabowski, Wojciech W.</creatorcontrib><creatorcontrib>Morrison, Hugh</creatorcontrib><creatorcontrib>University Corporation for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><title>Modeling Condensation in Deep Convection</title><title>Journal of the atmospheric sciences</title><description>Cloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes. When super- or subsaturations are allowed, condensation/evaporation can be calculated using the predicted saturation ratio and (either predicted or prescribed) mean droplet radius and concentration. The study investigates differences between simulations of deep unorganized convection applying a saturation adjustment condensation scheme (SADJ) and a scheme with supersaturation prediction (SPRE). A double-moment microphysics scheme with CCN activation parameterized as a function of the local vertical velocity is applied to compare cloud fields simulated applying SPRE and SADJ. Clean CCN conditions are assumed to demonstrate upper limits of the SPRE and SADJ difference. Microphysical piggybacking is used to extract the impacts with confidence. Results show a significant impact on deep convection dynamics, with SADJ featuring more cloud buoyancy and thus stronger updrafts. This leads to around a 3% increase of the surface rain accumulation in SADJ. Upper-tropospheric anvil cloud fractions are much larger in SPRE than in SADJ because of the higher ice concentrations and thus longer residence times of anvil particles in SPRE, as demonstrated by sensitivity tests. Higher ice concentrations in SPRE come from significantly larger ice supersaturations in strong convective updrafts that feature water supersaturations of several percent.</description><subject>Aerosols</subject><subject>Anvil clouds</subject><subject>Cloud droplets</subject><subject>Clouds</subject><subject>Condensation</subject><subject>Convection</subject><subject>Convection dynamics</subject><subject>Convective clouds</subject><subject>convective-scale processes</subject><subject>Droplets</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Evaporation</subject><subject>glaciation</subject><subject>Ice</subject><subject>meteorology & atmospheric sciences</subject><subject>Microphysics</subject><subject>Precipitation</subject><subject>Raindrop velocity</subject><subject>Saturation</subject><subject>Scale models</subject><subject>Simulation</subject><subject>Supersaturation</subject><subject>Temperature</subject><subject>Updraft</subject><subject>Vertical velocities</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>0022-4928</issn><issn>1520-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkEtLAzEUhYMoWKtrt0U3btLm5jXJsrQ-qbhQ1yGTuaNTajJOpoL_3hnq3Vw4fBwOHyGXwOYAhVo8LV_pmoKmjCs1hyMyAcUZZVLbYzJhjHMqLTen5CznLRuOFzAhN8-pwl0TP2arFCuM2fdNirMmztaI7Rj-YBijc3JS-13Gi_8_Je93t2-rB7p5uX9cLTc0SCZ6isIrX7MKpTSl58BLYZRBtFyh0hoKIY0O1nhlpZc2WC18YQwEH8pKV1xMydWhN-W-cTk0PYbPkGIcZjhQQlsLA3R9gNoufe8x926b9l0cdjluOC80gCgGanGgQpdy7rB2bdd8-e7XAXOjMzc4c2sH2o3OHIg_w7NcgQ</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Grabowski, Wojciech W.</creator><creator>Morrison, Hugh</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170701</creationdate><title>Modeling Condensation in Deep Convection</title><author>Grabowski, Wojciech W. ; Morrison, Hugh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e3a5af0de448ba212b3858ee925e566173486c98a594a49c963a7881cacbd6d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerosols</topic><topic>Anvil clouds</topic><topic>Cloud droplets</topic><topic>Clouds</topic><topic>Condensation</topic><topic>Convection</topic><topic>Convection dynamics</topic><topic>Convective clouds</topic><topic>convective-scale processes</topic><topic>Droplets</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Evaporation</topic><topic>glaciation</topic><topic>Ice</topic><topic>meteorology & atmospheric sciences</topic><topic>Microphysics</topic><topic>Precipitation</topic><topic>Raindrop velocity</topic><topic>Saturation</topic><topic>Scale models</topic><topic>Simulation</topic><topic>Supersaturation</topic><topic>Temperature</topic><topic>Updraft</topic><topic>Vertical velocities</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grabowski, Wojciech W.</creatorcontrib><creatorcontrib>Morrison, Hugh</creatorcontrib><creatorcontrib>University Corporation for Atmospheric Research, Boulder, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of the atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grabowski, Wojciech W.</au><au>Morrison, Hugh</au><aucorp>University Corporation for Atmospheric Research, Boulder, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Condensation in Deep Convection</atitle><jtitle>Journal of the atmospheric sciences</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>74</volume><issue>7</issue><spage>2247</spage><epage>2267</epage><pages>2247-2267</pages><issn>0022-4928</issn><eissn>1520-0469</eissn><abstract>Cloud-scale models apply two drastically different methods to represent condensation of water vapor to form and grow cloud droplets. Maintenance of water saturation inside liquid clouds is assumed in the computationally efficient saturation adjustment approach used in most bulk microphysics schemes. When super- or subsaturations are allowed, condensation/evaporation can be calculated using the predicted saturation ratio and (either predicted or prescribed) mean droplet radius and concentration. The study investigates differences between simulations of deep unorganized convection applying a saturation adjustment condensation scheme (SADJ) and a scheme with supersaturation prediction (SPRE). A double-moment microphysics scheme with CCN activation parameterized as a function of the local vertical velocity is applied to compare cloud fields simulated applying SPRE and SADJ. Clean CCN conditions are assumed to demonstrate upper limits of the SPRE and SADJ difference. Microphysical piggybacking is used to extract the impacts with confidence. Results show a significant impact on deep convection dynamics, with SADJ featuring more cloud buoyancy and thus stronger updrafts. This leads to around a 3% increase of the surface rain accumulation in SADJ. Upper-tropospheric anvil cloud fractions are much larger in SPRE than in SADJ because of the higher ice concentrations and thus longer residence times of anvil particles in SPRE, as demonstrated by sensitivity tests. Higher ice concentrations in SPRE come from significantly larger ice supersaturations in strong convective updrafts that feature water supersaturations of several percent.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JAS-D-16-0255.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4928 |
ispartof | Journal of the atmospheric sciences, 2017-07, Vol.74 (7), p.2247-2267 |
issn | 0022-4928 1520-0469 |
language | eng |
recordid | cdi_osti_scitechconnect_1536991 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Aerosols Anvil clouds Cloud droplets Clouds Condensation Convection Convection dynamics Convective clouds convective-scale processes Droplets ENVIRONMENTAL SCIENCES Evaporation glaciation Ice meteorology & atmospheric sciences Microphysics Precipitation Raindrop velocity Saturation Scale models Simulation Supersaturation Temperature Updraft Vertical velocities Water vapor Water vapour |
title | Modeling Condensation in Deep Convection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A50%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Condensation%20in%20Deep%20Convection&rft.jtitle=Journal%20of%20the%20atmospheric%20sciences&rft.au=Grabowski,%20Wojciech%20W.&rft.aucorp=University%20Corporation%20for%20Atmospheric%20Research,%20Boulder,%20CO%20(United%20States)&rft.date=2017-07-01&rft.volume=74&rft.issue=7&rft.spage=2247&rft.epage=2267&rft.pages=2247-2267&rft.issn=0022-4928&rft.eissn=1520-0469&rft_id=info:doi/10.1175/JAS-D-16-0255.1&rft_dat=%3Cproquest_osti_%3E2822761137%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2822761137&rft_id=info:pmid/&rfr_iscdi=true |