Resonant thermoelectric nanophotonics

Photodetectors are typically based either on photocurrent generation from electron–hole pairs in semiconductor structures or on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2017-08, Vol.12 (8), p.770-775
Hauptverfasser: Mauser, Kelly W., Kim, Seyoon, Mitrovic, Slobodan, Fleischman, Dagny, Pala, Ragip, Schwab, K. C., Atwater, Harry A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Photodetectors are typically based either on photocurrent generation from electron–hole pairs in semiconductor structures or on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performance. Here, we show subwavelength thermoelectric nanostructures designed for resonant spectrally selective absorption, which creates large localized temperature gradients even with unfocused, spatially uniform illumination to generate a thermoelectric voltage. We show that such structures are tunable and are capable of wavelength-specific detection, with an input power responsivity of up to 38 V W –1 , referenced to incident illumination, and bandwidth of nearly 3 kHz. This is obtained by combining resonant absorption and thermoelectric junctions within a single suspended membrane nanostructure, yielding a bandgap-independent photodetection mechanism. We report results for both bismuth telluride/antimony telluride and chromel/alumel structures as examples of a potentially broader class of resonant nanophotonic thermoelectric materials for optoelectronic applications such as non-bandgap-limited hyperspectral and broadband photodetectors. Subwavelength nanostructures generate a localized thermoelectric voltage for non-bandgap-limited photodetection.
ISSN:1748-3387
1748-3395
DOI:10.1038/nnano.2017.87