Gaussian-Based Coupled-Cluster Theory for the Ground-State and Band Structure of Solids
We present the results of Gaussian-based ground-state and excited-state equation-of-motion coupled-cluster theory with single and double excitations for three-dimensional solids. We focus on diamond and silicon, which are paradigmatic covalent semiconductors. In addition to ground-state properties (...
Gespeichert in:
Veröffentlicht in: | Journal of chemical theory and computation 2017-03, Vol.13 (3), p.1209-1218 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the results of Gaussian-based ground-state and excited-state equation-of-motion coupled-cluster theory with single and double excitations for three-dimensional solids. We focus on diamond and silicon, which are paradigmatic covalent semiconductors. In addition to ground-state properties (the lattice constant, bulk modulus, and cohesive energy), we compute the quasiparticle band structure and band gap. We sample the Brillouin zone with up to 64 k-points using norm-conserving pseudopotentials and polarized double- and triple-ζ basis sets, leading to canonical coupled-cluster calculations with as many as 256 electrons in 2176 orbitals. |
---|---|
ISSN: | 1549-9618 1549-9626 |
DOI: | 10.1021/acs.jctc.7b00049 |