On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals

One of the greatest challenges in the field of semiconductor nanomaterials is to make trap-free nanocrystalline structures to attain a remarkable improvement of their optoelectronic performances. In semiconductor nanomaterials, a very high number of atoms is located on the surface and these atoms fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2017-01, Vol.29 (2), p.752-761
Hauptverfasser: Houtepen, Arjan J, Hens, Zeger, Owen, Jonathan S, Infante, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 761
container_issue 2
container_start_page 752
container_title Chemistry of materials
container_volume 29
creator Houtepen, Arjan J
Hens, Zeger
Owen, Jonathan S
Infante, Ivan
description One of the greatest challenges in the field of semiconductor nanomaterials is to make trap-free nanocrystalline structures to attain a remarkable improvement of their optoelectronic performances. In semiconductor nanomaterials, a very high number of atoms is located on the surface and these atoms form the main source of electronic traps. The relation between surface atom coordination and electronic structure, however, remains largely unknown. Here, we use density functional theory to unveil the surface structure/electronic property relations of zincblende II–VI CdSe model nanocrystals, whose stoichiometry and surface termination agree with recent experimental findings. On the basis of the analysis of the surface geometry and the recent classification of the ligand surface coordination in terms of L-, X-, and Z-type ligands, we show that, contrary to expectations, most under-coordinated “dangling” atoms do not form traps and that L- and X-type ligands are benign to the nanocrystal electronic structure. On the other hand, we find clear evidence that Z-type displacement induces midgap states, localized on the 4p lone pair of 2-coordinated selenium surface atoms. We generalize our findings to the whole family of II–VI metal chalcogenide nanocrystals of any size and shape and propose a new schematic representation of the chemical bond in metal chalcogenide nanocrystals that includes explicitly the coordination number of surface atoms. This work results in a detailed understanding of the formation of surface traps and provides a clear handle for further optimization of colloidal nanocrystals for optoelectronics applications.
doi_str_mv 10.1021/acs.chemmater.6b04648
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1534450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d251550746</sourcerecordid><originalsourceid>FETCH-LOGICAL-a388t-cf81cad7be50ca144f3450daf6461d85795d28348de9ef92d5ebc0e586b738763</originalsourceid><addsrcrecordid>eNqFkE1OwzAQhS0EEqVwBCSLfYqd2ImzRBU_kapm0cLWcvxDXSVxZbuL7rgDN-QkuGrFltWTZt73NPMAuMdohlGOH4UMM7nRwyCi9rOyQ6Qk7AJMMM1RRhHKL8EEsbrKSEXLa3ATwhYhnFA2Act2hHGjYevtpx2hM3C190ZIDdde7AJMs7nre2eV6GHT_Hx9fzRwpQcr3aj2MjoPl2J00h9CFH24BVcmib476xS8vzyv52_Zon1t5k-LTBSMxUwahqVQVacpkgITYgpCkRKmJCVWjFY1VTkrCFO61qbOFdWdRJqysqsKVpXFFDyccl2Ilgdpo5abdNKoZeSYFiTFJRM9maR3IXht-M7bQfgDx4gfm-OpOf7XHD83lzh84o7rrdv7Mb3yD_MLZoV3Iw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals</title><source>American Chemical Society (ACS) Journals</source><creator>Houtepen, Arjan J ; Hens, Zeger ; Owen, Jonathan S ; Infante, Ivan</creator><creatorcontrib>Houtepen, Arjan J ; Hens, Zeger ; Owen, Jonathan S ; Infante, Ivan ; Columbia Univ., New York, NY (United States)</creatorcontrib><description>One of the greatest challenges in the field of semiconductor nanomaterials is to make trap-free nanocrystalline structures to attain a remarkable improvement of their optoelectronic performances. In semiconductor nanomaterials, a very high number of atoms is located on the surface and these atoms form the main source of electronic traps. The relation between surface atom coordination and electronic structure, however, remains largely unknown. Here, we use density functional theory to unveil the surface structure/electronic property relations of zincblende II–VI CdSe model nanocrystals, whose stoichiometry and surface termination agree with recent experimental findings. On the basis of the analysis of the surface geometry and the recent classification of the ligand surface coordination in terms of L-, X-, and Z-type ligands, we show that, contrary to expectations, most under-coordinated “dangling” atoms do not form traps and that L- and X-type ligands are benign to the nanocrystal electronic structure. On the other hand, we find clear evidence that Z-type displacement induces midgap states, localized on the 4p lone pair of 2-coordinated selenium surface atoms. We generalize our findings to the whole family of II–VI metal chalcogenide nanocrystals of any size and shape and propose a new schematic representation of the chemical bond in metal chalcogenide nanocrystals that includes explicitly the coordination number of surface atoms. This work results in a detailed understanding of the formation of surface traps and provides a clear handle for further optimization of colloidal nanocrystals for optoelectronics applications.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.6b04648</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Materials Science</subject><ispartof>Chemistry of materials, 2017-01, Vol.29 (2), p.752-761</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a388t-cf81cad7be50ca144f3450daf6461d85795d28348de9ef92d5ebc0e586b738763</citedby><cites>FETCH-LOGICAL-a388t-cf81cad7be50ca144f3450daf6461d85795d28348de9ef92d5ebc0e586b738763</cites><orcidid>0000-0003-3467-9376 ; 0000-0001-5502-3267 ; 0000000155023267 ; 0000000334679376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.6b04648$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.6b04648$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1534450$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Houtepen, Arjan J</creatorcontrib><creatorcontrib>Hens, Zeger</creatorcontrib><creatorcontrib>Owen, Jonathan S</creatorcontrib><creatorcontrib>Infante, Ivan</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><title>On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>One of the greatest challenges in the field of semiconductor nanomaterials is to make trap-free nanocrystalline structures to attain a remarkable improvement of their optoelectronic performances. In semiconductor nanomaterials, a very high number of atoms is located on the surface and these atoms form the main source of electronic traps. The relation between surface atom coordination and electronic structure, however, remains largely unknown. Here, we use density functional theory to unveil the surface structure/electronic property relations of zincblende II–VI CdSe model nanocrystals, whose stoichiometry and surface termination agree with recent experimental findings. On the basis of the analysis of the surface geometry and the recent classification of the ligand surface coordination in terms of L-, X-, and Z-type ligands, we show that, contrary to expectations, most under-coordinated “dangling” atoms do not form traps and that L- and X-type ligands are benign to the nanocrystal electronic structure. On the other hand, we find clear evidence that Z-type displacement induces midgap states, localized on the 4p lone pair of 2-coordinated selenium surface atoms. We generalize our findings to the whole family of II–VI metal chalcogenide nanocrystals of any size and shape and propose a new schematic representation of the chemical bond in metal chalcogenide nanocrystals that includes explicitly the coordination number of surface atoms. This work results in a detailed understanding of the formation of surface traps and provides a clear handle for further optimization of colloidal nanocrystals for optoelectronics applications.</description><subject>Chemistry</subject><subject>Materials Science</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAQhS0EEqVwBCSLfYqd2ImzRBU_kapm0cLWcvxDXSVxZbuL7rgDN-QkuGrFltWTZt73NPMAuMdohlGOH4UMM7nRwyCi9rOyQ6Qk7AJMMM1RRhHKL8EEsbrKSEXLa3ATwhYhnFA2Act2hHGjYevtpx2hM3C190ZIDdde7AJMs7nre2eV6GHT_Hx9fzRwpQcr3aj2MjoPl2J00h9CFH24BVcmib476xS8vzyv52_Zon1t5k-LTBSMxUwahqVQVacpkgITYgpCkRKmJCVWjFY1VTkrCFO61qbOFdWdRJqysqsKVpXFFDyccl2Ilgdpo5abdNKoZeSYFiTFJRM9maR3IXht-M7bQfgDx4gfm-OpOf7XHD83lzh84o7rrdv7Mb3yD_MLZoV3Iw</recordid><startdate>20170124</startdate><enddate>20170124</enddate><creator>Houtepen, Arjan J</creator><creator>Hens, Zeger</creator><creator>Owen, Jonathan S</creator><creator>Infante, Ivan</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3467-9376</orcidid><orcidid>https://orcid.org/0000-0001-5502-3267</orcidid><orcidid>https://orcid.org/0000000155023267</orcidid><orcidid>https://orcid.org/0000000334679376</orcidid></search><sort><creationdate>20170124</creationdate><title>On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals</title><author>Houtepen, Arjan J ; Hens, Zeger ; Owen, Jonathan S ; Infante, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a388t-cf81cad7be50ca144f3450daf6461d85795d28348de9ef92d5ebc0e586b738763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemistry</topic><topic>Materials Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houtepen, Arjan J</creatorcontrib><creatorcontrib>Hens, Zeger</creatorcontrib><creatorcontrib>Owen, Jonathan S</creatorcontrib><creatorcontrib>Infante, Ivan</creatorcontrib><creatorcontrib>Columbia Univ., New York, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houtepen, Arjan J</au><au>Hens, Zeger</au><au>Owen, Jonathan S</au><au>Infante, Ivan</au><aucorp>Columbia Univ., New York, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2017-01-24</date><risdate>2017</risdate><volume>29</volume><issue>2</issue><spage>752</spage><epage>761</epage><pages>752-761</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>One of the greatest challenges in the field of semiconductor nanomaterials is to make trap-free nanocrystalline structures to attain a remarkable improvement of their optoelectronic performances. In semiconductor nanomaterials, a very high number of atoms is located on the surface and these atoms form the main source of electronic traps. The relation between surface atom coordination and electronic structure, however, remains largely unknown. Here, we use density functional theory to unveil the surface structure/electronic property relations of zincblende II–VI CdSe model nanocrystals, whose stoichiometry and surface termination agree with recent experimental findings. On the basis of the analysis of the surface geometry and the recent classification of the ligand surface coordination in terms of L-, X-, and Z-type ligands, we show that, contrary to expectations, most under-coordinated “dangling” atoms do not form traps and that L- and X-type ligands are benign to the nanocrystal electronic structure. On the other hand, we find clear evidence that Z-type displacement induces midgap states, localized on the 4p lone pair of 2-coordinated selenium surface atoms. We generalize our findings to the whole family of II–VI metal chalcogenide nanocrystals of any size and shape and propose a new schematic representation of the chemical bond in metal chalcogenide nanocrystals that includes explicitly the coordination number of surface atoms. This work results in a detailed understanding of the formation of surface traps and provides a clear handle for further optimization of colloidal nanocrystals for optoelectronics applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.6b04648</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3467-9376</orcidid><orcidid>https://orcid.org/0000-0001-5502-3267</orcidid><orcidid>https://orcid.org/0000000155023267</orcidid><orcidid>https://orcid.org/0000000334679376</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2017-01, Vol.29 (2), p.752-761
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1534450
source American Chemical Society (ACS) Journals
subjects Chemistry
Materials Science
title On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A16%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Origin%20of%20Surface%20Traps%20in%20Colloidal%20II%E2%80%93VI%20Semiconductor%20Nanocrystals&rft.jtitle=Chemistry%20of%20materials&rft.au=Houtepen,%20Arjan%20J&rft.aucorp=Columbia%20Univ.,%20New%20York,%20NY%20(United%20States)&rft.date=2017-01-24&rft.volume=29&rft.issue=2&rft.spage=752&rft.epage=761&rft.pages=752-761&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.6b04648&rft_dat=%3Cacs_osti_%3Ed251550746%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true