Fast algorithms for Quadrature by Expansion I: Globally valid expansions

The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Class...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2017-09, Vol.345 (C), p.706-731
Hauptverfasser: Rachh, Manas, Klöckner, Andreas, O'Neil, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 731
container_issue C
container_start_page 706
container_title Journal of computational physics
container_volume 345
creator Rachh, Manas
Klöckner, Andreas
O'Neil, Michael
description The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method. Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.
doi_str_mv 10.1016/j.jcp.2017.04.062
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1533961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117303418</els_id><sourcerecordid>2061968674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-3ec5d34dcf72e285e7c521866381e629bf24454e2d7bc5228bfea5d47eb4a2fa3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AG9Bz61JmqatnmTZL1gQQc8hTaduSrdZk3Rx_70t1aunOczzDu88CN1RElNCxWMTN_oQM0KzmPCYCHaGZpQUJGIZFedoRgijUVEU9BJded8QQvKU5zO0XiofsGo_rTNht_e4tg6_9apyKvQOcHnCi--D6ryxHd484VVrS9W2J3xUrakw_O38DbqoVevh9ndeo4_l4n2-jravq838ZRvppEhDlIBOq4RXus4YsDyFTKeM5kIkOQXBirJmnKccWJWVw4blZQ0qrXgGJVesVsk1up_uWh-M9NoE0Dttuw50kDRNkkLQAXqYoIOzXz34IBvbu27oJRkRtBC5yPhA0YnSznrvoJYHZ_bKnSQlcrQqGzlYlaNVSbgcrA6Z5ykDw49HA26sAJ2GyrixQWXNP-kflDt-5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061968674</pqid></control><display><type>article</type><title>Fast algorithms for Quadrature by Expansion I: Globally valid expansions</title><source>Elsevier ScienceDirect Journals</source><creator>Rachh, Manas ; Klöckner, Andreas ; O'Neil, Michael</creator><creatorcontrib>Rachh, Manas ; Klöckner, Andreas ; O'Neil, Michael ; New York Univ. (NYU), NY (United States)</creatorcontrib><description>The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method. Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.04.062</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; Boundary value problems ; Computational physics ; Computer Science ; Fast multipole method ; Helmholtz equations ; High-order accuracy ; Integral equations ; Layer potentials ; Linear systems ; Nonlinear systems ; Numerical methods ; Operators (mathematics) ; Physics ; Quadrature ; Singular integrals ; Translations</subject><ispartof>Journal of computational physics, 2017-09, Vol.345 (C), p.706-731</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Sep 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-3ec5d34dcf72e285e7c521866381e629bf24454e2d7bc5228bfea5d47eb4a2fa3</citedby><cites>FETCH-LOGICAL-c395t-3ec5d34dcf72e285e7c521866381e629bf24454e2d7bc5228bfea5d47eb4a2fa3</cites><orcidid>0000-0003-2724-215X ; 000000032724215X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999117303418$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1533961$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rachh, Manas</creatorcontrib><creatorcontrib>Klöckner, Andreas</creatorcontrib><creatorcontrib>O'Neil, Michael</creatorcontrib><creatorcontrib>New York Univ. (NYU), NY (United States)</creatorcontrib><title>Fast algorithms for Quadrature by Expansion I: Globally valid expansions</title><title>Journal of computational physics</title><description>The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method. Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Computational physics</subject><subject>Computer Science</subject><subject>Fast multipole method</subject><subject>Helmholtz equations</subject><subject>High-order accuracy</subject><subject>Integral equations</subject><subject>Layer potentials</subject><subject>Linear systems</subject><subject>Nonlinear systems</subject><subject>Numerical methods</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Quadrature</subject><subject>Singular integrals</subject><subject>Translations</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AG9Bz61JmqatnmTZL1gQQc8hTaduSrdZk3Rx_70t1aunOczzDu88CN1RElNCxWMTN_oQM0KzmPCYCHaGZpQUJGIZFedoRgijUVEU9BJded8QQvKU5zO0XiofsGo_rTNht_e4tg6_9apyKvQOcHnCi--D6ryxHd484VVrS9W2J3xUrakw_O38DbqoVevh9ndeo4_l4n2-jravq838ZRvppEhDlIBOq4RXus4YsDyFTKeM5kIkOQXBirJmnKccWJWVw4blZQ0qrXgGJVesVsk1up_uWh-M9NoE0Dttuw50kDRNkkLQAXqYoIOzXz34IBvbu27oJRkRtBC5yPhA0YnSznrvoJYHZ_bKnSQlcrQqGzlYlaNVSbgcrA6Z5ykDw49HA26sAJ2GyrixQWXNP-kflDt-5w</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Rachh, Manas</creator><creator>Klöckner, Andreas</creator><creator>O'Neil, Michael</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2724-215X</orcidid><orcidid>https://orcid.org/000000032724215X</orcidid></search><sort><creationdate>20170915</creationdate><title>Fast algorithms for Quadrature by Expansion I: Globally valid expansions</title><author>Rachh, Manas ; Klöckner, Andreas ; O'Neil, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-3ec5d34dcf72e285e7c521866381e629bf24454e2d7bc5228bfea5d47eb4a2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Computational physics</topic><topic>Computer Science</topic><topic>Fast multipole method</topic><topic>Helmholtz equations</topic><topic>High-order accuracy</topic><topic>Integral equations</topic><topic>Layer potentials</topic><topic>Linear systems</topic><topic>Nonlinear systems</topic><topic>Numerical methods</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Quadrature</topic><topic>Singular integrals</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rachh, Manas</creatorcontrib><creatorcontrib>Klöckner, Andreas</creatorcontrib><creatorcontrib>O'Neil, Michael</creatorcontrib><creatorcontrib>New York Univ. (NYU), NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rachh, Manas</au><au>Klöckner, Andreas</au><au>O'Neil, Michael</au><aucorp>New York Univ. (NYU), NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast algorithms for Quadrature by Expansion I: Globally valid expansions</atitle><jtitle>Journal of computational physics</jtitle><date>2017-09-15</date><risdate>2017</risdate><volume>345</volume><issue>C</issue><spage>706</spage><epage>731</epage><pages>706-731</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method. Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.04.062</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2724-215X</orcidid><orcidid>https://orcid.org/000000032724215X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2017-09, Vol.345 (C), p.706-731
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_1533961
source Elsevier ScienceDirect Journals
subjects Algorithms
Boundary value problems
Computational physics
Computer Science
Fast multipole method
Helmholtz equations
High-order accuracy
Integral equations
Layer potentials
Linear systems
Nonlinear systems
Numerical methods
Operators (mathematics)
Physics
Quadrature
Singular integrals
Translations
title Fast algorithms for Quadrature by Expansion I: Globally valid expansions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20algorithms%20for%20Quadrature%20by%20Expansion%20I:%20Globally%20valid%20expansions&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Rachh,%20Manas&rft.aucorp=New%20York%20Univ.%20(NYU),%20NY%20(United%20States)&rft.date=2017-09-15&rft.volume=345&rft.issue=C&rft.spage=706&rft.epage=731&rft.pages=706-731&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.04.062&rft_dat=%3Cproquest_osti_%3E2061968674%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061968674&rft_id=info:pmid/&rft_els_id=S0021999117303418&rfr_iscdi=true