Fast algorithms for Quadrature by Expansion I: Globally valid expansions
The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Class...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2017-09, Vol.345 (C), p.706-731 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 731 |
---|---|
container_issue | C |
container_start_page | 706 |
container_title | Journal of computational physics |
container_volume | 345 |
creator | Rachh, Manas Klöckner, Andreas O'Neil, Michael |
description | The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method.
Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples. |
doi_str_mv | 10.1016/j.jcp.2017.04.062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1533961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999117303418</els_id><sourcerecordid>2061968674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-3ec5d34dcf72e285e7c521866381e629bf24454e2d7bc5228bfea5d47eb4a2fa3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AG9Bz61JmqatnmTZL1gQQc8hTaduSrdZk3Rx_70t1aunOczzDu88CN1RElNCxWMTN_oQM0KzmPCYCHaGZpQUJGIZFedoRgijUVEU9BJded8QQvKU5zO0XiofsGo_rTNht_e4tg6_9apyKvQOcHnCi--D6ryxHd484VVrS9W2J3xUrakw_O38DbqoVevh9ndeo4_l4n2-jravq838ZRvppEhDlIBOq4RXus4YsDyFTKeM5kIkOQXBirJmnKccWJWVw4blZQ0qrXgGJVesVsk1up_uWh-M9NoE0Dttuw50kDRNkkLQAXqYoIOzXz34IBvbu27oJRkRtBC5yPhA0YnSznrvoJYHZ_bKnSQlcrQqGzlYlaNVSbgcrA6Z5ykDw49HA26sAJ2GyrixQWXNP-kflDt-5w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2061968674</pqid></control><display><type>article</type><title>Fast algorithms for Quadrature by Expansion I: Globally valid expansions</title><source>Elsevier ScienceDirect Journals</source><creator>Rachh, Manas ; Klöckner, Andreas ; O'Neil, Michael</creator><creatorcontrib>Rachh, Manas ; Klöckner, Andreas ; O'Neil, Michael ; New York Univ. (NYU), NY (United States)</creatorcontrib><description>The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method.
Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2017.04.062</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Algorithms ; Boundary value problems ; Computational physics ; Computer Science ; Fast multipole method ; Helmholtz equations ; High-order accuracy ; Integral equations ; Layer potentials ; Linear systems ; Nonlinear systems ; Numerical methods ; Operators (mathematics) ; Physics ; Quadrature ; Singular integrals ; Translations</subject><ispartof>Journal of computational physics, 2017-09, Vol.345 (C), p.706-731</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Sep 15, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-3ec5d34dcf72e285e7c521866381e629bf24454e2d7bc5228bfea5d47eb4a2fa3</citedby><cites>FETCH-LOGICAL-c395t-3ec5d34dcf72e285e7c521866381e629bf24454e2d7bc5228bfea5d47eb4a2fa3</cites><orcidid>0000-0003-2724-215X ; 000000032724215X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021999117303418$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1533961$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rachh, Manas</creatorcontrib><creatorcontrib>Klöckner, Andreas</creatorcontrib><creatorcontrib>O'Neil, Michael</creatorcontrib><creatorcontrib>New York Univ. (NYU), NY (United States)</creatorcontrib><title>Fast algorithms for Quadrature by Expansion I: Globally valid expansions</title><title>Journal of computational physics</title><description>The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method.
Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.</description><subject>Algorithms</subject><subject>Boundary value problems</subject><subject>Computational physics</subject><subject>Computer Science</subject><subject>Fast multipole method</subject><subject>Helmholtz equations</subject><subject>High-order accuracy</subject><subject>Integral equations</subject><subject>Layer potentials</subject><subject>Linear systems</subject><subject>Nonlinear systems</subject><subject>Numerical methods</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Quadrature</subject><subject>Singular integrals</subject><subject>Translations</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AG9Bz61JmqatnmTZL1gQQc8hTaduSrdZk3Rx_70t1aunOczzDu88CN1RElNCxWMTN_oQM0KzmPCYCHaGZpQUJGIZFedoRgijUVEU9BJded8QQvKU5zO0XiofsGo_rTNht_e4tg6_9apyKvQOcHnCi--D6ryxHd484VVrS9W2J3xUrakw_O38DbqoVevh9ndeo4_l4n2-jravq838ZRvppEhDlIBOq4RXus4YsDyFTKeM5kIkOQXBirJmnKccWJWVw4blZQ0qrXgGJVesVsk1up_uWh-M9NoE0Dttuw50kDRNkkLQAXqYoIOzXz34IBvbu27oJRkRtBC5yPhA0YnSznrvoJYHZ_bKnSQlcrQqGzlYlaNVSbgcrA6Z5ykDw49HA26sAJ2GyrixQWXNP-kflDt-5w</recordid><startdate>20170915</startdate><enddate>20170915</enddate><creator>Rachh, Manas</creator><creator>Klöckner, Andreas</creator><creator>O'Neil, Michael</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2724-215X</orcidid><orcidid>https://orcid.org/000000032724215X</orcidid></search><sort><creationdate>20170915</creationdate><title>Fast algorithms for Quadrature by Expansion I: Globally valid expansions</title><author>Rachh, Manas ; Klöckner, Andreas ; O'Neil, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-3ec5d34dcf72e285e7c521866381e629bf24454e2d7bc5228bfea5d47eb4a2fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Boundary value problems</topic><topic>Computational physics</topic><topic>Computer Science</topic><topic>Fast multipole method</topic><topic>Helmholtz equations</topic><topic>High-order accuracy</topic><topic>Integral equations</topic><topic>Layer potentials</topic><topic>Linear systems</topic><topic>Nonlinear systems</topic><topic>Numerical methods</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Quadrature</topic><topic>Singular integrals</topic><topic>Translations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rachh, Manas</creatorcontrib><creatorcontrib>Klöckner, Andreas</creatorcontrib><creatorcontrib>O'Neil, Michael</creatorcontrib><creatorcontrib>New York Univ. (NYU), NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rachh, Manas</au><au>Klöckner, Andreas</au><au>O'Neil, Michael</au><aucorp>New York Univ. (NYU), NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast algorithms for Quadrature by Expansion I: Globally valid expansions</atitle><jtitle>Journal of computational physics</jtitle><date>2017-09-15</date><risdate>2017</risdate><volume>345</volume><issue>C</issue><spage>706</spage><epage>731</epage><pages>706-731</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>The use of integral equation methods for the efficient numerical solution of PDE boundary value problems requires two main tools: quadrature rules for the evaluation of layer potential integral operators with singular kernels, and fast algorithms for solving the resulting dense linear systems. Classically, these tools were developed separately. In this work, we present a unified numerical scheme based on coupling Quadrature by Expansion, a recent quadrature method, to a customized Fast Multipole Method (FMM) for the Helmholtz equation in two dimensions. The method allows the evaluation of layer potentials in linear-time complexity, anywhere in space, with a uniform, user-chosen level of accuracy as a black-box computational method.
Providing this capability requires geometric and algorithmic considerations beyond the needs of standard FMMs as well as careful consideration of the accuracy of multipole translations. We illustrate the speed and accuracy of our method with various numerical examples.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2017.04.062</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-2724-215X</orcidid><orcidid>https://orcid.org/000000032724215X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2017-09, Vol.345 (C), p.706-731 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_osti_scitechconnect_1533961 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Boundary value problems Computational physics Computer Science Fast multipole method Helmholtz equations High-order accuracy Integral equations Layer potentials Linear systems Nonlinear systems Numerical methods Operators (mathematics) Physics Quadrature Singular integrals Translations |
title | Fast algorithms for Quadrature by Expansion I: Globally valid expansions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20algorithms%20for%20Quadrature%20by%20Expansion%20I:%20Globally%20valid%20expansions&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Rachh,%20Manas&rft.aucorp=New%20York%20Univ.%20(NYU),%20NY%20(United%20States)&rft.date=2017-09-15&rft.volume=345&rft.issue=C&rft.spage=706&rft.epage=731&rft.pages=706-731&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2017.04.062&rft_dat=%3Cproquest_osti_%3E2061968674%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2061968674&rft_id=info:pmid/&rft_els_id=S0021999117303418&rfr_iscdi=true |