Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals

Compression of a single crystal, superelastic NiTi shape memory alloy (SMA) micro-pillar and the stress-field around an ellipsoidal twinned martensite (M) plate embedded in an austenite (A) matrix were simulated using a coupled phase transformation and crystal plasticity model. Post-mortem transmiss...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2017-06, Vol.132 (C), p.444-454
Hauptverfasser: Paranjape, Harshad M., Bowers, Matthew L., Mills, Michael J., Anderson, Peter M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue C
container_start_page 444
container_title Acta materialia
container_volume 132
creator Paranjape, Harshad M.
Bowers, Matthew L.
Mills, Michael J.
Anderson, Peter M.
description Compression of a single crystal, superelastic NiTi shape memory alloy (SMA) micro-pillar and the stress-field around an ellipsoidal twinned martensite (M) plate embedded in an austenite (A) matrix were simulated using a coupled phase transformation and crystal plasticity model. Post-mortem transmission electron microscopy (TEM) analysis of the dislocation structures in a foil extracted from a compressed NiTi micro-pillar was also performed. Based on these modeling and experimental data, we propose mechanisms for phase-transformation-induced defect generation in superelastically stressed NiTi SMA. The geometry of the simulated slip bands shows that dislocations nucleate and grow in the austenite phase adjacent to a growing or receding martensite plate to accommodate local strain gradients. The simulated resolved shear stress on individual slip systems, and Burgers vector analysis of dislocations in the TEM data show that the slip system and amount of slip activity depend on the magnitude of the strain gradients, which are controlled by the martensite crystallography, the dynamics of martensite plate growth, and scale of the twinned structure and A-M interface. In addition to a[0 1 0] (1 0 1¯) and a [0 0 1] (1¯1 0) slip systems observed in prior experiments, we report the activation of a third slip system: a[0 0 1](1 1 0). We show that the three slip systems are likely to be active at different locations around a martensite plate. The modeling component in this work complements ex-situ TEM characterization by furnishing the resolved shear stress and slip activity on austenite slip systems throughout the cyclic loading. [Display omitted]
doi_str_mv 10.1016/j.actamat.2017.04.066
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1533477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645417303609</els_id><sourcerecordid>S1359645417303609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-f1094222d313670b5951807cb0393bc266daafcf02aca2fad56d7f8b360c0b753</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKs_QQi-7zq57z6JFG9Q8cU-h2w2S1P2RhKF_femtO8-zRw4c2bmQ-ieQEmAyMdDaWwyg0klBaJK4CVIeYFWpFKsoFywy9wzUReSC36NbmI8ABCqOKzQ7tPZvRl9HCLupoDnvYkOp2DGmGXO9NOI_dj-WNfi2Ps5Cxz3ZnZ4cMMUFmz6flrw4G2YChuWmEwfb9FVl4u7O9c12r2-fG_ei-3X28fmeVtYVrFUdARqTiltGWFSQSNqQSpQtgFWs8ZSKVtjOtsBNdbQzrRCtqqrGibBQqMEW6OHU-4Uk9fR-pS_sdM4Ops0EYxxpbJJnEz5whiD6_Qc_GDCognoI0B90GeA-ghQA9cZYJ57Os25_MGvd-G4wI0ZhA_H_Hby_yT8AdBTfUU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Paranjape, Harshad M. ; Bowers, Matthew L. ; Mills, Michael J. ; Anderson, Peter M.</creator><creatorcontrib>Paranjape, Harshad M. ; Bowers, Matthew L. ; Mills, Michael J. ; Anderson, Peter M. ; The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><description>Compression of a single crystal, superelastic NiTi shape memory alloy (SMA) micro-pillar and the stress-field around an ellipsoidal twinned martensite (M) plate embedded in an austenite (A) matrix were simulated using a coupled phase transformation and crystal plasticity model. Post-mortem transmission electron microscopy (TEM) analysis of the dislocation structures in a foil extracted from a compressed NiTi micro-pillar was also performed. Based on these modeling and experimental data, we propose mechanisms for phase-transformation-induced defect generation in superelastically stressed NiTi SMA. The geometry of the simulated slip bands shows that dislocations nucleate and grow in the austenite phase adjacent to a growing or receding martensite plate to accommodate local strain gradients. The simulated resolved shear stress on individual slip systems, and Burgers vector analysis of dislocations in the TEM data show that the slip system and amount of slip activity depend on the magnitude of the strain gradients, which are controlled by the martensite crystallography, the dynamics of martensite plate growth, and scale of the twinned structure and A-M interface. In addition to a[0 1 0] (1 0 1¯) and a [0 0 1] (1¯1 0) slip systems observed in prior experiments, we report the activation of a third slip system: a[0 0 1](1 1 0). We show that the three slip systems are likely to be active at different locations around a martensite plate. The modeling component in this work complements ex-situ TEM characterization by furnishing the resolved shear stress and slip activity on austenite slip systems throughout the cyclic loading. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2017.04.066</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Crystal plasticity ; Dislocation structures ; Materials Science ; Metallurgy &amp; Metallurgical Engineering ; NiTi ; Phase field modeling ; Shape memory alloys</subject><ispartof>Acta materialia, 2017-06, Vol.132 (C), p.444-454</ispartof><rights>2017 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-f1094222d313670b5951807cb0393bc266daafcf02aca2fad56d7f8b360c0b753</citedby><cites>FETCH-LOGICAL-c383t-f1094222d313670b5951807cb0393bc266daafcf02aca2fad56d7f8b360c0b753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2017.04.066$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1533477$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Paranjape, Harshad M.</creatorcontrib><creatorcontrib>Bowers, Matthew L.</creatorcontrib><creatorcontrib>Mills, Michael J.</creatorcontrib><creatorcontrib>Anderson, Peter M.</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><title>Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals</title><title>Acta materialia</title><description>Compression of a single crystal, superelastic NiTi shape memory alloy (SMA) micro-pillar and the stress-field around an ellipsoidal twinned martensite (M) plate embedded in an austenite (A) matrix were simulated using a coupled phase transformation and crystal plasticity model. Post-mortem transmission electron microscopy (TEM) analysis of the dislocation structures in a foil extracted from a compressed NiTi micro-pillar was also performed. Based on these modeling and experimental data, we propose mechanisms for phase-transformation-induced defect generation in superelastically stressed NiTi SMA. The geometry of the simulated slip bands shows that dislocations nucleate and grow in the austenite phase adjacent to a growing or receding martensite plate to accommodate local strain gradients. The simulated resolved shear stress on individual slip systems, and Burgers vector analysis of dislocations in the TEM data show that the slip system and amount of slip activity depend on the magnitude of the strain gradients, which are controlled by the martensite crystallography, the dynamics of martensite plate growth, and scale of the twinned structure and A-M interface. In addition to a[0 1 0] (1 0 1¯) and a [0 0 1] (1¯1 0) slip systems observed in prior experiments, we report the activation of a third slip system: a[0 0 1](1 1 0). We show that the three slip systems are likely to be active at different locations around a martensite plate. The modeling component in this work complements ex-situ TEM characterization by furnishing the resolved shear stress and slip activity on austenite slip systems throughout the cyclic loading. [Display omitted]</description><subject>Crystal plasticity</subject><subject>Dislocation structures</subject><subject>Materials Science</subject><subject>Metallurgy &amp; Metallurgical Engineering</subject><subject>NiTi</subject><subject>Phase field modeling</subject><subject>Shape memory alloys</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKs_QQi-7zq57z6JFG9Q8cU-h2w2S1P2RhKF_femtO8-zRw4c2bmQ-ieQEmAyMdDaWwyg0klBaJK4CVIeYFWpFKsoFywy9wzUReSC36NbmI8ABCqOKzQ7tPZvRl9HCLupoDnvYkOp2DGmGXO9NOI_dj-WNfi2Ps5Cxz3ZnZ4cMMUFmz6flrw4G2YChuWmEwfb9FVl4u7O9c12r2-fG_ei-3X28fmeVtYVrFUdARqTiltGWFSQSNqQSpQtgFWs8ZSKVtjOtsBNdbQzrRCtqqrGibBQqMEW6OHU-4Uk9fR-pS_sdM4Ops0EYxxpbJJnEz5whiD6_Qc_GDCognoI0B90GeA-ghQA9cZYJ57Os25_MGvd-G4wI0ZhA_H_Hby_yT8AdBTfUU</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Paranjape, Harshad M.</creator><creator>Bowers, Matthew L.</creator><creator>Mills, Michael J.</creator><creator>Anderson, Peter M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20170615</creationdate><title>Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals</title><author>Paranjape, Harshad M. ; Bowers, Matthew L. ; Mills, Michael J. ; Anderson, Peter M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-f1094222d313670b5951807cb0393bc266daafcf02aca2fad56d7f8b360c0b753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Crystal plasticity</topic><topic>Dislocation structures</topic><topic>Materials Science</topic><topic>Metallurgy &amp; Metallurgical Engineering</topic><topic>NiTi</topic><topic>Phase field modeling</topic><topic>Shape memory alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paranjape, Harshad M.</creatorcontrib><creatorcontrib>Bowers, Matthew L.</creatorcontrib><creatorcontrib>Mills, Michael J.</creatorcontrib><creatorcontrib>Anderson, Peter M.</creatorcontrib><creatorcontrib>The Ohio State Univ., Columbus, OH (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paranjape, Harshad M.</au><au>Bowers, Matthew L.</au><au>Mills, Michael J.</au><au>Anderson, Peter M.</au><aucorp>The Ohio State Univ., Columbus, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals</atitle><jtitle>Acta materialia</jtitle><date>2017-06-15</date><risdate>2017</risdate><volume>132</volume><issue>C</issue><spage>444</spage><epage>454</epage><pages>444-454</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Compression of a single crystal, superelastic NiTi shape memory alloy (SMA) micro-pillar and the stress-field around an ellipsoidal twinned martensite (M) plate embedded in an austenite (A) matrix were simulated using a coupled phase transformation and crystal plasticity model. Post-mortem transmission electron microscopy (TEM) analysis of the dislocation structures in a foil extracted from a compressed NiTi micro-pillar was also performed. Based on these modeling and experimental data, we propose mechanisms for phase-transformation-induced defect generation in superelastically stressed NiTi SMA. The geometry of the simulated slip bands shows that dislocations nucleate and grow in the austenite phase adjacent to a growing or receding martensite plate to accommodate local strain gradients. The simulated resolved shear stress on individual slip systems, and Burgers vector analysis of dislocations in the TEM data show that the slip system and amount of slip activity depend on the magnitude of the strain gradients, which are controlled by the martensite crystallography, the dynamics of martensite plate growth, and scale of the twinned structure and A-M interface. In addition to a[0 1 0] (1 0 1¯) and a [0 0 1] (1¯1 0) slip systems observed in prior experiments, we report the activation of a third slip system: a[0 0 1](1 1 0). We show that the three slip systems are likely to be active at different locations around a martensite plate. The modeling component in this work complements ex-situ TEM characterization by furnishing the resolved shear stress and slip activity on austenite slip systems throughout the cyclic loading. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2017.04.066</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2017-06, Vol.132 (C), p.444-454
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_1533477
source ScienceDirect Journals (5 years ago - present)
subjects Crystal plasticity
Dislocation structures
Materials Science
Metallurgy & Metallurgical Engineering
NiTi
Phase field modeling
Shape memory alloys
title Mechanisms for phase transformation induced slip in shape memory alloy micro-crystals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20for%20phase%20transformation%20induced%20slip%20in%20shape%20memory%20alloy%20micro-crystals&rft.jtitle=Acta%20materialia&rft.au=Paranjape,%20Harshad%20M.&rft.aucorp=The%20Ohio%20State%20Univ.,%20Columbus,%20OH%20(United%20States)&rft.date=2017-06-15&rft.volume=132&rft.issue=C&rft.spage=444&rft.epage=454&rft.pages=444-454&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2017.04.066&rft_dat=%3Celsevier_osti_%3ES1359645417303609%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645417303609&rfr_iscdi=true