Coarsening of complex microstructures following spinodal decomposition
Coarsening plays a pivotal role in materials engineering, but our understanding of the dynamics of coarsening in morphologically complex systems is still limited. In this paper, we examine the correlations between the interfacial velocity and interfacial morphologies, and then predict the evolution...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2017-06, Vol.132, p.13-24 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24 |
---|---|
container_issue | |
container_start_page | 13 |
container_title | Acta materialia |
container_volume | 132 |
creator | Park, C.-L. Gibbs, J.W. Voorhees, P.W. Thornton, K. |
description | Coarsening plays a pivotal role in materials engineering, but our understanding of the dynamics of coarsening in morphologically complex systems is still limited. In this paper, we examine the correlations between the interfacial velocity and interfacial morphologies, and then predict the evolution of mean curvature based on the correlations. Three simulated structures with varying volume fractions, two bicontinuous and one nonbicontinuous, are generated using the Cahn-Hilliard equation. We find general correlations between interfacial velocity and mean curvature, as well as between interfacial velocity and the surface Laplacian of the mean curvature. Furthermore, we find that the probability of finding a patch of interface with a given normal velocity and the same local principal curvatures is described well by a Gaussian distribution, independent of the principal curvature values and the volume fractions of the structures. We also find that average interfacial velocity is described by a polynomial of the mean curvature and the net curvature. Based on this finding, we develop a semi-analytical approach to predicting the rate of change of the mean curvature, which determines the morphological evolution of complex microstructures.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2017.03.020 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1533470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645417302112</els_id><sourcerecordid>S1359645417302112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-34dedd15c41890bcb218a8c3f0cf4786d1af83e04ca87e3637f097f053a8549b3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUgR-4Rxxk6cFUIVL6kSG1hbrh_gKokr2-Xx9yRq9yxGM4szd-ZeQq4pVBRoc7utlM5qULmqgbYVYAU1nJAFFS2WNeN4Os3Iu7JhnJ2Ti5S2ALRuGSzI4yqomOzox48iuEKHYdfbn2LwOoaU417nfbSpcKHvw_cMpZ0fg1F9YewMh-SzD-MlOXOqT_bq2Jfk_fHhbfVcrl-fXlb361IjNrlEZqwxlGtGRQcbvampUEKjA-1YKxpDlRNogWklWosNtg66qTgqwVm3wSW5OehOz3mZtM9Wf-owjlZnSTkia2GC-AGaPaRondxFP6j4KynIOTG5lcfE5JyYBJRTYtPe3WHPTg6-vI3zATtqa3yc9U3w_yj8AX5LeGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coarsening of complex microstructures following spinodal decomposition</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Park, C.-L. ; Gibbs, J.W. ; Voorhees, P.W. ; Thornton, K.</creator><creatorcontrib>Park, C.-L. ; Gibbs, J.W. ; Voorhees, P.W. ; Thornton, K. ; Northwestern Univ., Evanston, IL (United States) ; Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><description>Coarsening plays a pivotal role in materials engineering, but our understanding of the dynamics of coarsening in morphologically complex systems is still limited. In this paper, we examine the correlations between the interfacial velocity and interfacial morphologies, and then predict the evolution of mean curvature based on the correlations. Three simulated structures with varying volume fractions, two bicontinuous and one nonbicontinuous, are generated using the Cahn-Hilliard equation. We find general correlations between interfacial velocity and mean curvature, as well as between interfacial velocity and the surface Laplacian of the mean curvature. Furthermore, we find that the probability of finding a patch of interface with a given normal velocity and the same local principal curvatures is described well by a Gaussian distribution, independent of the principal curvature values and the volume fractions of the structures. We also find that average interfacial velocity is described by a polynomial of the mean curvature and the net curvature. Based on this finding, we develop a semi-analytical approach to predicting the rate of change of the mean curvature, which determines the morphological evolution of complex microstructures.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2017.03.020</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Coarsening ; Curvature evolution ; Interfacial velocity ; MATERIALS SCIENCE ; Phase-field model ; Spinodal decomposition</subject><ispartof>Acta materialia, 2017-06, Vol.132, p.13-24</ispartof><rights>2017 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-34dedd15c41890bcb218a8c3f0cf4786d1af83e04ca87e3637f097f053a8549b3</citedby><cites>FETCH-LOGICAL-c336t-34dedd15c41890bcb218a8c3f0cf4786d1af83e04ca87e3637f097f053a8549b3</cites><orcidid>0000-0002-0231-1318 ; 0000-0002-1227-5293 ; 0000000202311318 ; 0000000212275293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2017.03.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1533470$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, C.-L.</creatorcontrib><creatorcontrib>Gibbs, J.W.</creatorcontrib><creatorcontrib>Voorhees, P.W.</creatorcontrib><creatorcontrib>Thornton, K.</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><title>Coarsening of complex microstructures following spinodal decomposition</title><title>Acta materialia</title><description>Coarsening plays a pivotal role in materials engineering, but our understanding of the dynamics of coarsening in morphologically complex systems is still limited. In this paper, we examine the correlations between the interfacial velocity and interfacial morphologies, and then predict the evolution of mean curvature based on the correlations. Three simulated structures with varying volume fractions, two bicontinuous and one nonbicontinuous, are generated using the Cahn-Hilliard equation. We find general correlations between interfacial velocity and mean curvature, as well as between interfacial velocity and the surface Laplacian of the mean curvature. Furthermore, we find that the probability of finding a patch of interface with a given normal velocity and the same local principal curvatures is described well by a Gaussian distribution, independent of the principal curvature values and the volume fractions of the structures. We also find that average interfacial velocity is described by a polynomial of the mean curvature and the net curvature. Based on this finding, we develop a semi-analytical approach to predicting the rate of change of the mean curvature, which determines the morphological evolution of complex microstructures.
[Display omitted]</description><subject>Coarsening</subject><subject>Curvature evolution</subject><subject>Interfacial velocity</subject><subject>MATERIALS SCIENCE</subject><subject>Phase-field model</subject><subject>Spinodal decomposition</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUgR-4Rxxk6cFUIVL6kSG1hbrh_gKokr2-Xx9yRq9yxGM4szd-ZeQq4pVBRoc7utlM5qULmqgbYVYAU1nJAFFS2WNeN4Os3Iu7JhnJ2Ti5S2ALRuGSzI4yqomOzox48iuEKHYdfbn2LwOoaU417nfbSpcKHvw_cMpZ0fg1F9YewMh-SzD-MlOXOqT_bq2Jfk_fHhbfVcrl-fXlb361IjNrlEZqwxlGtGRQcbvampUEKjA-1YKxpDlRNogWklWosNtg66qTgqwVm3wSW5OehOz3mZtM9Wf-owjlZnSTkia2GC-AGaPaRondxFP6j4KynIOTG5lcfE5JyYBJRTYtPe3WHPTg6-vI3zATtqa3yc9U3w_yj8AX5LeGQ</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Park, C.-L.</creator><creator>Gibbs, J.W.</creator><creator>Voorhees, P.W.</creator><creator>Thornton, K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0231-1318</orcidid><orcidid>https://orcid.org/0000-0002-1227-5293</orcidid><orcidid>https://orcid.org/0000000202311318</orcidid><orcidid>https://orcid.org/0000000212275293</orcidid></search><sort><creationdate>20170615</creationdate><title>Coarsening of complex microstructures following spinodal decomposition</title><author>Park, C.-L. ; Gibbs, J.W. ; Voorhees, P.W. ; Thornton, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-34dedd15c41890bcb218a8c3f0cf4786d1af83e04ca87e3637f097f053a8549b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coarsening</topic><topic>Curvature evolution</topic><topic>Interfacial velocity</topic><topic>MATERIALS SCIENCE</topic><topic>Phase-field model</topic><topic>Spinodal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, C.-L.</creatorcontrib><creatorcontrib>Gibbs, J.W.</creatorcontrib><creatorcontrib>Voorhees, P.W.</creatorcontrib><creatorcontrib>Thornton, K.</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, C.-L.</au><au>Gibbs, J.W.</au><au>Voorhees, P.W.</au><au>Thornton, K.</au><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><aucorp>Univ. of Michigan, Ann Arbor, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarsening of complex microstructures following spinodal decomposition</atitle><jtitle>Acta materialia</jtitle><date>2017-06-15</date><risdate>2017</risdate><volume>132</volume><spage>13</spage><epage>24</epage><pages>13-24</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Coarsening plays a pivotal role in materials engineering, but our understanding of the dynamics of coarsening in morphologically complex systems is still limited. In this paper, we examine the correlations between the interfacial velocity and interfacial morphologies, and then predict the evolution of mean curvature based on the correlations. Three simulated structures with varying volume fractions, two bicontinuous and one nonbicontinuous, are generated using the Cahn-Hilliard equation. We find general correlations between interfacial velocity and mean curvature, as well as between interfacial velocity and the surface Laplacian of the mean curvature. Furthermore, we find that the probability of finding a patch of interface with a given normal velocity and the same local principal curvatures is described well by a Gaussian distribution, independent of the principal curvature values and the volume fractions of the structures. We also find that average interfacial velocity is described by a polynomial of the mean curvature and the net curvature. Based on this finding, we develop a semi-analytical approach to predicting the rate of change of the mean curvature, which determines the morphological evolution of complex microstructures.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2017.03.020</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0231-1318</orcidid><orcidid>https://orcid.org/0000-0002-1227-5293</orcidid><orcidid>https://orcid.org/0000000202311318</orcidid><orcidid>https://orcid.org/0000000212275293</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2017-06, Vol.132, p.13-24 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_1533470 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Coarsening Curvature evolution Interfacial velocity MATERIALS SCIENCE Phase-field model Spinodal decomposition |
title | Coarsening of complex microstructures following spinodal decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarsening%20of%20complex%20microstructures%20following%20spinodal%20decomposition&rft.jtitle=Acta%20materialia&rft.au=Park,%20C.-L.&rft.aucorp=Northwestern%20Univ.,%20Evanston,%20IL%20(United%20States)&rft.date=2017-06-15&rft.volume=132&rft.spage=13&rft.epage=24&rft.pages=13-24&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2017.03.020&rft_dat=%3Celsevier_osti_%3ES1359645417302112%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645417302112&rfr_iscdi=true |