Coarsening of complex microstructures following spinodal decomposition

Coarsening plays a pivotal role in materials engineering, but our understanding of the dynamics of coarsening in morphologically complex systems is still limited. In this paper, we examine the correlations between the interfacial velocity and interfacial morphologies, and then predict the evolution...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2017-06, Vol.132, p.13-24
Hauptverfasser: Park, C.-L., Gibbs, J.W., Voorhees, P.W., Thornton, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue
container_start_page 13
container_title Acta materialia
container_volume 132
creator Park, C.-L.
Gibbs, J.W.
Voorhees, P.W.
Thornton, K.
description Coarsening plays a pivotal role in materials engineering, but our understanding of the dynamics of coarsening in morphologically complex systems is still limited. In this paper, we examine the correlations between the interfacial velocity and interfacial morphologies, and then predict the evolution of mean curvature based on the correlations. Three simulated structures with varying volume fractions, two bicontinuous and one nonbicontinuous, are generated using the Cahn-Hilliard equation. We find general correlations between interfacial velocity and mean curvature, as well as between interfacial velocity and the surface Laplacian of the mean curvature. Furthermore, we find that the probability of finding a patch of interface with a given normal velocity and the same local principal curvatures is described well by a Gaussian distribution, independent of the principal curvature values and the volume fractions of the structures. We also find that average interfacial velocity is described by a polynomial of the mean curvature and the net curvature. Based on this finding, we develop a semi-analytical approach to predicting the rate of change of the mean curvature, which determines the morphological evolution of complex microstructures. [Display omitted]
doi_str_mv 10.1016/j.actamat.2017.03.020
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1533470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645417302112</els_id><sourcerecordid>S1359645417302112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-34dedd15c41890bcb218a8c3f0cf4786d1af83e04ca87e3637f097f053a8549b3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUgR-4Rxxk6cFUIVL6kSG1hbrh_gKokr2-Xx9yRq9yxGM4szd-ZeQq4pVBRoc7utlM5qULmqgbYVYAU1nJAFFS2WNeN4Os3Iu7JhnJ2Ti5S2ALRuGSzI4yqomOzox48iuEKHYdfbn2LwOoaU417nfbSpcKHvw_cMpZ0fg1F9YewMh-SzD-MlOXOqT_bq2Jfk_fHhbfVcrl-fXlb361IjNrlEZqwxlGtGRQcbvampUEKjA-1YKxpDlRNogWklWosNtg66qTgqwVm3wSW5OehOz3mZtM9Wf-owjlZnSTkia2GC-AGaPaRondxFP6j4KynIOTG5lcfE5JyYBJRTYtPe3WHPTg6-vI3zATtqa3yc9U3w_yj8AX5LeGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coarsening of complex microstructures following spinodal decomposition</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Park, C.-L. ; Gibbs, J.W. ; Voorhees, P.W. ; Thornton, K.</creator><creatorcontrib>Park, C.-L. ; Gibbs, J.W. ; Voorhees, P.W. ; Thornton, K. ; Northwestern Univ., Evanston, IL (United States) ; Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><description>Coarsening plays a pivotal role in materials engineering, but our understanding of the dynamics of coarsening in morphologically complex systems is still limited. In this paper, we examine the correlations between the interfacial velocity and interfacial morphologies, and then predict the evolution of mean curvature based on the correlations. Three simulated structures with varying volume fractions, two bicontinuous and one nonbicontinuous, are generated using the Cahn-Hilliard equation. We find general correlations between interfacial velocity and mean curvature, as well as between interfacial velocity and the surface Laplacian of the mean curvature. Furthermore, we find that the probability of finding a patch of interface with a given normal velocity and the same local principal curvatures is described well by a Gaussian distribution, independent of the principal curvature values and the volume fractions of the structures. We also find that average interfacial velocity is described by a polynomial of the mean curvature and the net curvature. Based on this finding, we develop a semi-analytical approach to predicting the rate of change of the mean curvature, which determines the morphological evolution of complex microstructures. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2017.03.020</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Coarsening ; Curvature evolution ; Interfacial velocity ; MATERIALS SCIENCE ; Phase-field model ; Spinodal decomposition</subject><ispartof>Acta materialia, 2017-06, Vol.132, p.13-24</ispartof><rights>2017 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-34dedd15c41890bcb218a8c3f0cf4786d1af83e04ca87e3637f097f053a8549b3</citedby><cites>FETCH-LOGICAL-c336t-34dedd15c41890bcb218a8c3f0cf4786d1af83e04ca87e3637f097f053a8549b3</cites><orcidid>0000-0002-0231-1318 ; 0000-0002-1227-5293 ; 0000000202311318 ; 0000000212275293</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2017.03.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1533470$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, C.-L.</creatorcontrib><creatorcontrib>Gibbs, J.W.</creatorcontrib><creatorcontrib>Voorhees, P.W.</creatorcontrib><creatorcontrib>Thornton, K.</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><title>Coarsening of complex microstructures following spinodal decomposition</title><title>Acta materialia</title><description>Coarsening plays a pivotal role in materials engineering, but our understanding of the dynamics of coarsening in morphologically complex systems is still limited. In this paper, we examine the correlations between the interfacial velocity and interfacial morphologies, and then predict the evolution of mean curvature based on the correlations. Three simulated structures with varying volume fractions, two bicontinuous and one nonbicontinuous, are generated using the Cahn-Hilliard equation. We find general correlations between interfacial velocity and mean curvature, as well as between interfacial velocity and the surface Laplacian of the mean curvature. Furthermore, we find that the probability of finding a patch of interface with a given normal velocity and the same local principal curvatures is described well by a Gaussian distribution, independent of the principal curvature values and the volume fractions of the structures. We also find that average interfacial velocity is described by a polynomial of the mean curvature and the net curvature. Based on this finding, we develop a semi-analytical approach to predicting the rate of change of the mean curvature, which determines the morphological evolution of complex microstructures. [Display omitted]</description><subject>Coarsening</subject><subject>Curvature evolution</subject><subject>Interfacial velocity</subject><subject>MATERIALS SCIENCE</subject><subject>Phase-field model</subject><subject>Spinodal decomposition</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUgR-4Rxxk6cFUIVL6kSG1hbrh_gKokr2-Xx9yRq9yxGM4szd-ZeQq4pVBRoc7utlM5qULmqgbYVYAU1nJAFFS2WNeN4Os3Iu7JhnJ2Ti5S2ALRuGSzI4yqomOzox48iuEKHYdfbn2LwOoaU417nfbSpcKHvw_cMpZ0fg1F9YewMh-SzD-MlOXOqT_bq2Jfk_fHhbfVcrl-fXlb361IjNrlEZqwxlGtGRQcbvampUEKjA-1YKxpDlRNogWklWosNtg66qTgqwVm3wSW5OehOz3mZtM9Wf-owjlZnSTkia2GC-AGaPaRondxFP6j4KynIOTG5lcfE5JyYBJRTYtPe3WHPTg6-vI3zATtqa3yc9U3w_yj8AX5LeGQ</recordid><startdate>20170615</startdate><enddate>20170615</enddate><creator>Park, C.-L.</creator><creator>Gibbs, J.W.</creator><creator>Voorhees, P.W.</creator><creator>Thornton, K.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0231-1318</orcidid><orcidid>https://orcid.org/0000-0002-1227-5293</orcidid><orcidid>https://orcid.org/0000000202311318</orcidid><orcidid>https://orcid.org/0000000212275293</orcidid></search><sort><creationdate>20170615</creationdate><title>Coarsening of complex microstructures following spinodal decomposition</title><author>Park, C.-L. ; Gibbs, J.W. ; Voorhees, P.W. ; Thornton, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-34dedd15c41890bcb218a8c3f0cf4786d1af83e04ca87e3637f097f053a8549b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Coarsening</topic><topic>Curvature evolution</topic><topic>Interfacial velocity</topic><topic>MATERIALS SCIENCE</topic><topic>Phase-field model</topic><topic>Spinodal decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, C.-L.</creatorcontrib><creatorcontrib>Gibbs, J.W.</creatorcontrib><creatorcontrib>Voorhees, P.W.</creatorcontrib><creatorcontrib>Thornton, K.</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><creatorcontrib>Univ. of Michigan, Ann Arbor, MI (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, C.-L.</au><au>Gibbs, J.W.</au><au>Voorhees, P.W.</au><au>Thornton, K.</au><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><aucorp>Univ. of Michigan, Ann Arbor, MI (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coarsening of complex microstructures following spinodal decomposition</atitle><jtitle>Acta materialia</jtitle><date>2017-06-15</date><risdate>2017</risdate><volume>132</volume><spage>13</spage><epage>24</epage><pages>13-24</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Coarsening plays a pivotal role in materials engineering, but our understanding of the dynamics of coarsening in morphologically complex systems is still limited. In this paper, we examine the correlations between the interfacial velocity and interfacial morphologies, and then predict the evolution of mean curvature based on the correlations. Three simulated structures with varying volume fractions, two bicontinuous and one nonbicontinuous, are generated using the Cahn-Hilliard equation. We find general correlations between interfacial velocity and mean curvature, as well as between interfacial velocity and the surface Laplacian of the mean curvature. Furthermore, we find that the probability of finding a patch of interface with a given normal velocity and the same local principal curvatures is described well by a Gaussian distribution, independent of the principal curvature values and the volume fractions of the structures. We also find that average interfacial velocity is described by a polynomial of the mean curvature and the net curvature. Based on this finding, we develop a semi-analytical approach to predicting the rate of change of the mean curvature, which determines the morphological evolution of complex microstructures. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2017.03.020</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0231-1318</orcidid><orcidid>https://orcid.org/0000-0002-1227-5293</orcidid><orcidid>https://orcid.org/0000000202311318</orcidid><orcidid>https://orcid.org/0000000212275293</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2017-06, Vol.132, p.13-24
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_1533470
source Elsevier ScienceDirect Journals Complete
subjects Coarsening
Curvature evolution
Interfacial velocity
MATERIALS SCIENCE
Phase-field model
Spinodal decomposition
title Coarsening of complex microstructures following spinodal decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A20%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coarsening%20of%20complex%20microstructures%20following%20spinodal%20decomposition&rft.jtitle=Acta%20materialia&rft.au=Park,%20C.-L.&rft.aucorp=Northwestern%20Univ.,%20Evanston,%20IL%20(United%20States)&rft.date=2017-06-15&rft.volume=132&rft.spage=13&rft.epage=24&rft.pages=13-24&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2017.03.020&rft_dat=%3Celsevier_osti_%3ES1359645417302112%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645417302112&rfr_iscdi=true