Development and Optimization of Tailored Composite TBC Design Architectures for Improved Erosion Durability
Rare-earth pyrochlores, RE 2 Zr 2 O 7 , have been identified as potential thermal barrier coating (TBC) materials due to their attractive thermal properties and CMAS resistance. However, they possess a low fracture toughness which results in poor erosion durability/foreign object damage resistance....
Gespeichert in:
Veröffentlicht in: | Journal of thermal spray technology 2017-08, Vol.26 (6), p.1062-1075 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1075 |
---|---|
container_issue | 6 |
container_start_page | 1062 |
container_title | Journal of thermal spray technology |
container_volume | 26 |
creator | Schmitt, Michael P. Schreiber, Jeremy M. Rai, Amarendra K. Eden, Timothy J. Wolfe, Douglas E. |
description | Rare-earth pyrochlores, RE
2
Zr
2
O
7
, have been identified as potential thermal barrier coating (TBC) materials due to their attractive thermal properties and CMAS resistance. However, they possess a low fracture toughness which results in poor erosion durability/foreign object damage resistance. This research focuses on the development of tailored composite air plasma spray (APS) TBC design architectures utilizing a
t
′ Low-k secondary toughening phase (ZrO
2
-2Y
2
O
3
-1Gd
2
O
3
-1Yb
2
O
3
; mol.%) to enhance the erosion durability of a hyper-stoichiometric pyrochlore, NZO (ZrO
2
-25Nd
2
O
3
-5Y
2
O
3
-5Yb
2
O
3
; mol.%). In this study, composite coatings have been deposited with 30, 50, and 70% (wt.%)
t
′ Low-k toughening phase in a horizontally aligned lamellar morphology which enhances the toughening response of the coating. The coatings were characterized via SEM and XRD and were tested for erosion durability before and after isothermal heat treatment at 1100 °C. Analysis with mixing laws indicated improved erosion performance; however, a lack of long-term thermal stability was shown via isothermal heat treatments at 1316 °C. An impact stress analysis was performed using finite element analysis of a coating cross section, representing the first microstructurally realistic study of mechanical properties of TBCs with the results correlating well with observed behavior. |
doi_str_mv | 10.1007/s11666-017-0561-6 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1533404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s11666_017_0561_6</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-b6ccc0c5b3a6c9e5df13568c7bb0c5d32c1fb282724a3691471497096c86684c3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhC0EEuXxA7hZ3APe-JHkWNIClSr1Us6W4zitSxJHdlqp_HpchTOnXa2-Gc0OQk9AXoCQ7DUACCESAllCuIBEXKEZcMYSICCu4054kRSCklt0F8KBkEilfIa-F-ZkWjd0ph-x6mu8GUbb2R81Wtdj1-Ctsq3zpsal6wYX7Gjw9q3ECxPsrsdzr_fxpMejNwE3zuNVN3h3ivzSRzp6LI5eVba14_kB3TSqDebxb96jr_fltvxM1puPVTlfJ5oCH5NKaK2J5hVVQheG1w1QLnKdVVW81jTV0FRpnmYpU1QUwDJgRUYKoXMhcqbpPXqefF0YrQz6EnCvXd_HnBI4pYywCMEE6ZgzeNPIwdtO-bMEIi-VyqlSGSuVl0qliJp00oTI9jvj5cEdfR9_-Uf0CyRuegw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Development and Optimization of Tailored Composite TBC Design Architectures for Improved Erosion Durability</title><source>SpringerLink Journals</source><creator>Schmitt, Michael P. ; Schreiber, Jeremy M. ; Rai, Amarendra K. ; Eden, Timothy J. ; Wolfe, Douglas E.</creator><creatorcontrib>Schmitt, Michael P. ; Schreiber, Jeremy M. ; Rai, Amarendra K. ; Eden, Timothy J. ; Wolfe, Douglas E. ; UES, Inc., Dayton, OH (United States)</creatorcontrib><description>Rare-earth pyrochlores, RE
2
Zr
2
O
7
, have been identified as potential thermal barrier coating (TBC) materials due to their attractive thermal properties and CMAS resistance. However, they possess a low fracture toughness which results in poor erosion durability/foreign object damage resistance. This research focuses on the development of tailored composite air plasma spray (APS) TBC design architectures utilizing a
t
′ Low-k secondary toughening phase (ZrO
2
-2Y
2
O
3
-1Gd
2
O
3
-1Yb
2
O
3
; mol.%) to enhance the erosion durability of a hyper-stoichiometric pyrochlore, NZO (ZrO
2
-25Nd
2
O
3
-5Y
2
O
3
-5Yb
2
O
3
; mol.%). In this study, composite coatings have been deposited with 30, 50, and 70% (wt.%)
t
′ Low-k toughening phase in a horizontally aligned lamellar morphology which enhances the toughening response of the coating. The coatings were characterized via SEM and XRD and were tested for erosion durability before and after isothermal heat treatment at 1100 °C. Analysis with mixing laws indicated improved erosion performance; however, a lack of long-term thermal stability was shown via isothermal heat treatments at 1316 °C. An impact stress analysis was performed using finite element analysis of a coating cross section, representing the first microstructurally realistic study of mechanical properties of TBCs with the results correlating well with observed behavior.</description><identifier>ISSN: 1059-9630</identifier><identifier>EISSN: 1544-1016</identifier><identifier>DOI: 10.1007/s11666-017-0561-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytical Chemistry ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion and Coatings ; Machines ; Manufacturing ; Materials Science ; Peer Reviewed ; Processes ; Surfaces and Interfaces ; Thin Films ; Tribology</subject><ispartof>Journal of thermal spray technology, 2017-08, Vol.26 (6), p.1062-1075</ispartof><rights>ASM International 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-b6ccc0c5b3a6c9e5df13568c7bb0c5d32c1fb282724a3691471497096c86684c3</citedby><cites>FETCH-LOGICAL-c315t-b6ccc0c5b3a6c9e5df13568c7bb0c5d32c1fb282724a3691471497096c86684c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11666-017-0561-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11666-017-0561-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1533404$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schmitt, Michael P.</creatorcontrib><creatorcontrib>Schreiber, Jeremy M.</creatorcontrib><creatorcontrib>Rai, Amarendra K.</creatorcontrib><creatorcontrib>Eden, Timothy J.</creatorcontrib><creatorcontrib>Wolfe, Douglas E.</creatorcontrib><creatorcontrib>UES, Inc., Dayton, OH (United States)</creatorcontrib><title>Development and Optimization of Tailored Composite TBC Design Architectures for Improved Erosion Durability</title><title>Journal of thermal spray technology</title><addtitle>J Therm Spray Tech</addtitle><description>Rare-earth pyrochlores, RE
2
Zr
2
O
7
, have been identified as potential thermal barrier coating (TBC) materials due to their attractive thermal properties and CMAS resistance. However, they possess a low fracture toughness which results in poor erosion durability/foreign object damage resistance. This research focuses on the development of tailored composite air plasma spray (APS) TBC design architectures utilizing a
t
′ Low-k secondary toughening phase (ZrO
2
-2Y
2
O
3
-1Gd
2
O
3
-1Yb
2
O
3
; mol.%) to enhance the erosion durability of a hyper-stoichiometric pyrochlore, NZO (ZrO
2
-25Nd
2
O
3
-5Y
2
O
3
-5Yb
2
O
3
; mol.%). In this study, composite coatings have been deposited with 30, 50, and 70% (wt.%)
t
′ Low-k toughening phase in a horizontally aligned lamellar morphology which enhances the toughening response of the coating. The coatings were characterized via SEM and XRD and were tested for erosion durability before and after isothermal heat treatment at 1100 °C. Analysis with mixing laws indicated improved erosion performance; however, a lack of long-term thermal stability was shown via isothermal heat treatments at 1316 °C. An impact stress analysis was performed using finite element analysis of a coating cross section, representing the first microstructurally realistic study of mechanical properties of TBCs with the results correlating well with observed behavior.</description><subject>Analytical Chemistry</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion and Coatings</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials Science</subject><subject>Peer Reviewed</subject><subject>Processes</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tribology</subject><issn>1059-9630</issn><issn>1544-1016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhC0EEuXxA7hZ3APe-JHkWNIClSr1Us6W4zitSxJHdlqp_HpchTOnXa2-Gc0OQk9AXoCQ7DUACCESAllCuIBEXKEZcMYSICCu4054kRSCklt0F8KBkEilfIa-F-ZkWjd0ph-x6mu8GUbb2R81Wtdj1-Ctsq3zpsal6wYX7Gjw9q3ECxPsrsdzr_fxpMejNwE3zuNVN3h3ivzSRzp6LI5eVba14_kB3TSqDebxb96jr_fltvxM1puPVTlfJ5oCH5NKaK2J5hVVQheG1w1QLnKdVVW81jTV0FRpnmYpU1QUwDJgRUYKoXMhcqbpPXqefF0YrQz6EnCvXd_HnBI4pYywCMEE6ZgzeNPIwdtO-bMEIi-VyqlSGSuVl0qliJp00oTI9jvj5cEdfR9_-Uf0CyRuegw</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Schmitt, Michael P.</creator><creator>Schreiber, Jeremy M.</creator><creator>Rai, Amarendra K.</creator><creator>Eden, Timothy J.</creator><creator>Wolfe, Douglas E.</creator><general>Springer US</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20170801</creationdate><title>Development and Optimization of Tailored Composite TBC Design Architectures for Improved Erosion Durability</title><author>Schmitt, Michael P. ; Schreiber, Jeremy M. ; Rai, Amarendra K. ; Eden, Timothy J. ; Wolfe, Douglas E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-b6ccc0c5b3a6c9e5df13568c7bb0c5d32c1fb282724a3691471497096c86684c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical Chemistry</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion and Coatings</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials Science</topic><topic>Peer Reviewed</topic><topic>Processes</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tribology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmitt, Michael P.</creatorcontrib><creatorcontrib>Schreiber, Jeremy M.</creatorcontrib><creatorcontrib>Rai, Amarendra K.</creatorcontrib><creatorcontrib>Eden, Timothy J.</creatorcontrib><creatorcontrib>Wolfe, Douglas E.</creatorcontrib><creatorcontrib>UES, Inc., Dayton, OH (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of thermal spray technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmitt, Michael P.</au><au>Schreiber, Jeremy M.</au><au>Rai, Amarendra K.</au><au>Eden, Timothy J.</au><au>Wolfe, Douglas E.</au><aucorp>UES, Inc., Dayton, OH (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Optimization of Tailored Composite TBC Design Architectures for Improved Erosion Durability</atitle><jtitle>Journal of thermal spray technology</jtitle><stitle>J Therm Spray Tech</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>26</volume><issue>6</issue><spage>1062</spage><epage>1075</epage><pages>1062-1075</pages><issn>1059-9630</issn><eissn>1544-1016</eissn><abstract>Rare-earth pyrochlores, RE
2
Zr
2
O
7
, have been identified as potential thermal barrier coating (TBC) materials due to their attractive thermal properties and CMAS resistance. However, they possess a low fracture toughness which results in poor erosion durability/foreign object damage resistance. This research focuses on the development of tailored composite air plasma spray (APS) TBC design architectures utilizing a
t
′ Low-k secondary toughening phase (ZrO
2
-2Y
2
O
3
-1Gd
2
O
3
-1Yb
2
O
3
; mol.%) to enhance the erosion durability of a hyper-stoichiometric pyrochlore, NZO (ZrO
2
-25Nd
2
O
3
-5Y
2
O
3
-5Yb
2
O
3
; mol.%). In this study, composite coatings have been deposited with 30, 50, and 70% (wt.%)
t
′ Low-k toughening phase in a horizontally aligned lamellar morphology which enhances the toughening response of the coating. The coatings were characterized via SEM and XRD and were tested for erosion durability before and after isothermal heat treatment at 1100 °C. Analysis with mixing laws indicated improved erosion performance; however, a lack of long-term thermal stability was shown via isothermal heat treatments at 1316 °C. An impact stress analysis was performed using finite element analysis of a coating cross section, representing the first microstructurally realistic study of mechanical properties of TBCs with the results correlating well with observed behavior.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11666-017-0561-6</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1059-9630 |
ispartof | Journal of thermal spray technology, 2017-08, Vol.26 (6), p.1062-1075 |
issn | 1059-9630 1544-1016 |
language | eng |
recordid | cdi_osti_scitechconnect_1533404 |
source | SpringerLink Journals |
subjects | Analytical Chemistry Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion and Coatings Machines Manufacturing Materials Science Peer Reviewed Processes Surfaces and Interfaces Thin Films Tribology |
title | Development and Optimization of Tailored Composite TBC Design Architectures for Improved Erosion Durability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T02%3A16%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Optimization%20of%20Tailored%20Composite%20TBC%20Design%20Architectures%20for%20Improved%20Erosion%20Durability&rft.jtitle=Journal%20of%20thermal%20spray%20technology&rft.au=Schmitt,%20Michael%20P.&rft.aucorp=UES,%20Inc.,%20Dayton,%20OH%20(United%20States)&rft.date=2017-08-01&rft.volume=26&rft.issue=6&rft.spage=1062&rft.epage=1075&rft.pages=1062-1075&rft.issn=1059-9630&rft.eissn=1544-1016&rft_id=info:doi/10.1007/s11666-017-0561-6&rft_dat=%3Ccrossref_osti_%3E10_1007_s11666_017_0561_6%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |