Reduced-order model for microstructure evolution prediction in the electrodes of solid oxide fuel cell with dynamic discrepancy reduced modeling

Microstructure evolution in the electrodes of solid oxide fuel cell is an important degradation mechanism which reduces active sites for redox reaction and the electric conductivity. Phase field models for microstructure evolution simulation are usually expensive for large scale simulations. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2019-03, Vol.416 (C), p.37-49
Hauptverfasser: Lei, Yinkai, Cheng, Tian-Le, Mebane, David S., Wen, You-Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue C
container_start_page 37
container_title Journal of power sources
container_volume 416
creator Lei, Yinkai
Cheng, Tian-Le
Mebane, David S.
Wen, You-Hai
description Microstructure evolution in the electrodes of solid oxide fuel cell is an important degradation mechanism which reduces active sites for redox reaction and the electric conductivity. Phase field models for microstructure evolution simulation are usually expensive for large scale simulations. In this work, a reduced-order coarsening model is developed using dynamic discrepancy reduced modeling, which reduces the model order by inserting Gaussian process stochastic functions into the dynamic equations of Ostwald ripening. The reduced order model has been calibrated on a dataset generated by a phase field model that has been well validated to experiments. A validating dataset has also been generated with which the model prediction show good agreement. This model is further applied to predict long term microstructure evolution in different SOFC electrodes. This work is the first attempt of building a degradation model of SOFC using data science techniques. [Display omitted] •A reduced order coarsening model for microstructure evolution prediction in SOFC electrode.•Dynamic discrepancy reduced modeling is used to enhance the Ostwald ripening model.•Phase field simulations used in model training and validation.•First attempt of applying data science technique in the research of SOFC degradation.
doi_str_mv 10.1016/j.jpowsour.2019.01.046
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1532662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775319300564</els_id><sourcerecordid>S0378775319300564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-b79509d7fdacfb832d4a494483839a8a843f2a978447c2cc074f1e5e6de354e13</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKdfQYLvrUmTNu2bMvwHgiD6HLLkxmV0zUjazX0LP7Kp1Wef7oV7zzmcH0KXlOSU0Op6na-3fh_9EPKC0CYnNCe8OkIzWguWFaIsj9GMMFFnQpTsFJ3FuCaEUCrIDH29ghk0mMwHAwFvvIEWW582p4OPfRh0PwTAsPPt0Dvf4W0A4_TP6jrcr9KtBd2HpIzYWxx96wz2n84AtkNy09C2eO_6FTaHTiVfbFzUAbaq0wccpvwp2XUf5-jEqjbCxe-co_f7u7fFY_b88vC0uH3ONC-qPluKpiSNEdYobZc1KwxXvOG8ZjVrVK1qzmyhGlFzLnShNRHcUiihMsBKDpTN0dXkm0o6GbXrQa-077rURdKSFVVVpKdqehpZxABWboPbqHCQlMgRvlzLP_hyhC8JlQl-Et5MQkgVdg7CmABdKurCGGC8-8_iGwqelbc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reduced-order model for microstructure evolution prediction in the electrodes of solid oxide fuel cell with dynamic discrepancy reduced modeling</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lei, Yinkai ; Cheng, Tian-Le ; Mebane, David S. ; Wen, You-Hai</creator><creatorcontrib>Lei, Yinkai ; Cheng, Tian-Le ; Mebane, David S. ; Wen, You-Hai ; National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><description>Microstructure evolution in the electrodes of solid oxide fuel cell is an important degradation mechanism which reduces active sites for redox reaction and the electric conductivity. Phase field models for microstructure evolution simulation are usually expensive for large scale simulations. In this work, a reduced-order coarsening model is developed using dynamic discrepancy reduced modeling, which reduces the model order by inserting Gaussian process stochastic functions into the dynamic equations of Ostwald ripening. The reduced order model has been calibrated on a dataset generated by a phase field model that has been well validated to experiments. A validating dataset has also been generated with which the model prediction show good agreement. This model is further applied to predict long term microstructure evolution in different SOFC electrodes. This work is the first attempt of building a degradation model of SOFC using data science techniques. [Display omitted] •A reduced order coarsening model for microstructure evolution prediction in SOFC electrode.•Dynamic discrepancy reduced modeling is used to enhance the Ostwald ripening model.•Phase field simulations used in model training and validation.•First attempt of applying data science technique in the research of SOFC degradation.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2019.01.046</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Bayesian calibration ; Dynamic discrepancy reduced modeling ; ENGINEERING ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; MATERIALS SCIENCE ; Microstructure evolution ; Phase-field simulation ; Reduced order model ; SOFC degradation</subject><ispartof>Journal of power sources, 2019-03, Vol.416 (C), p.37-49</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-b79509d7fdacfb832d4a494483839a8a843f2a978447c2cc074f1e5e6de354e13</citedby><cites>FETCH-LOGICAL-c426t-b79509d7fdacfb832d4a494483839a8a843f2a978447c2cc074f1e5e6de354e13</cites><orcidid>0000-0002-0200-1491 ; 0000000202001491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2019.01.046$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1532662$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Yinkai</creatorcontrib><creatorcontrib>Cheng, Tian-Le</creatorcontrib><creatorcontrib>Mebane, David S.</creatorcontrib><creatorcontrib>Wen, You-Hai</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><title>Reduced-order model for microstructure evolution prediction in the electrodes of solid oxide fuel cell with dynamic discrepancy reduced modeling</title><title>Journal of power sources</title><description>Microstructure evolution in the electrodes of solid oxide fuel cell is an important degradation mechanism which reduces active sites for redox reaction and the electric conductivity. Phase field models for microstructure evolution simulation are usually expensive for large scale simulations. In this work, a reduced-order coarsening model is developed using dynamic discrepancy reduced modeling, which reduces the model order by inserting Gaussian process stochastic functions into the dynamic equations of Ostwald ripening. The reduced order model has been calibrated on a dataset generated by a phase field model that has been well validated to experiments. A validating dataset has also been generated with which the model prediction show good agreement. This model is further applied to predict long term microstructure evolution in different SOFC electrodes. This work is the first attempt of building a degradation model of SOFC using data science techniques. [Display omitted] •A reduced order coarsening model for microstructure evolution prediction in SOFC electrode.•Dynamic discrepancy reduced modeling is used to enhance the Ostwald ripening model.•Phase field simulations used in model training and validation.•First attempt of applying data science technique in the research of SOFC degradation.</description><subject>Bayesian calibration</subject><subject>Dynamic discrepancy reduced modeling</subject><subject>ENGINEERING</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>MATERIALS SCIENCE</subject><subject>Microstructure evolution</subject><subject>Phase-field simulation</subject><subject>Reduced order model</subject><subject>SOFC degradation</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKdfQYLvrUmTNu2bMvwHgiD6HLLkxmV0zUjazX0LP7Kp1Wef7oV7zzmcH0KXlOSU0Op6na-3fh_9EPKC0CYnNCe8OkIzWguWFaIsj9GMMFFnQpTsFJ3FuCaEUCrIDH29ghk0mMwHAwFvvIEWW582p4OPfRh0PwTAsPPt0Dvf4W0A4_TP6jrcr9KtBd2HpIzYWxx96wz2n84AtkNy09C2eO_6FTaHTiVfbFzUAbaq0wccpvwp2XUf5-jEqjbCxe-co_f7u7fFY_b88vC0uH3ONC-qPluKpiSNEdYobZc1KwxXvOG8ZjVrVK1qzmyhGlFzLnShNRHcUiihMsBKDpTN0dXkm0o6GbXrQa-077rURdKSFVVVpKdqehpZxABWboPbqHCQlMgRvlzLP_hyhC8JlQl-Et5MQkgVdg7CmABdKurCGGC8-8_iGwqelbc</recordid><startdate>20190315</startdate><enddate>20190315</enddate><creator>Lei, Yinkai</creator><creator>Cheng, Tian-Le</creator><creator>Mebane, David S.</creator><creator>Wen, You-Hai</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0200-1491</orcidid><orcidid>https://orcid.org/0000000202001491</orcidid></search><sort><creationdate>20190315</creationdate><title>Reduced-order model for microstructure evolution prediction in the electrodes of solid oxide fuel cell with dynamic discrepancy reduced modeling</title><author>Lei, Yinkai ; Cheng, Tian-Le ; Mebane, David S. ; Wen, You-Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-b79509d7fdacfb832d4a494483839a8a843f2a978447c2cc074f1e5e6de354e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian calibration</topic><topic>Dynamic discrepancy reduced modeling</topic><topic>ENGINEERING</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>MATERIALS SCIENCE</topic><topic>Microstructure evolution</topic><topic>Phase-field simulation</topic><topic>Reduced order model</topic><topic>SOFC degradation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Yinkai</creatorcontrib><creatorcontrib>Cheng, Tian-Le</creatorcontrib><creatorcontrib>Mebane, David S.</creatorcontrib><creatorcontrib>Wen, You-Hai</creatorcontrib><creatorcontrib>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Yinkai</au><au>Cheng, Tian-Le</au><au>Mebane, David S.</au><au>Wen, You-Hai</au><aucorp>National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced-order model for microstructure evolution prediction in the electrodes of solid oxide fuel cell with dynamic discrepancy reduced modeling</atitle><jtitle>Journal of power sources</jtitle><date>2019-03-15</date><risdate>2019</risdate><volume>416</volume><issue>C</issue><spage>37</spage><epage>49</epage><pages>37-49</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>Microstructure evolution in the electrodes of solid oxide fuel cell is an important degradation mechanism which reduces active sites for redox reaction and the electric conductivity. Phase field models for microstructure evolution simulation are usually expensive for large scale simulations. In this work, a reduced-order coarsening model is developed using dynamic discrepancy reduced modeling, which reduces the model order by inserting Gaussian process stochastic functions into the dynamic equations of Ostwald ripening. The reduced order model has been calibrated on a dataset generated by a phase field model that has been well validated to experiments. A validating dataset has also been generated with which the model prediction show good agreement. This model is further applied to predict long term microstructure evolution in different SOFC electrodes. This work is the first attempt of building a degradation model of SOFC using data science techniques. [Display omitted] •A reduced order coarsening model for microstructure evolution prediction in SOFC electrode.•Dynamic discrepancy reduced modeling is used to enhance the Ostwald ripening model.•Phase field simulations used in model training and validation.•First attempt of applying data science technique in the research of SOFC degradation.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2019.01.046</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0200-1491</orcidid><orcidid>https://orcid.org/0000000202001491</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2019-03, Vol.416 (C), p.37-49
issn 0378-7753
1873-2755
language eng
recordid cdi_osti_scitechconnect_1532662
source Access via ScienceDirect (Elsevier)
subjects Bayesian calibration
Dynamic discrepancy reduced modeling
ENGINEERING
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
MATERIALS SCIENCE
Microstructure evolution
Phase-field simulation
Reduced order model
SOFC degradation
title Reduced-order model for microstructure evolution prediction in the electrodes of solid oxide fuel cell with dynamic discrepancy reduced modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T09%3A23%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced-order%20model%20for%20microstructure%20evolution%20prediction%20in%20the%20electrodes%20of%20solid%20oxide%20fuel%20cell%20with%20dynamic%20discrepancy%20reduced%20modeling&rft.jtitle=Journal%20of%20power%20sources&rft.au=Lei,%20Yinkai&rft.aucorp=National%20Energy%20Technology%20Laboratory%20(NETL),%20Pittsburgh,%20PA,%20Morgantown,%20WV,%20and%20Albany,%20OR%20(United%20States)&rft.date=2019-03-15&rft.volume=416&rft.issue=C&rft.spage=37&rft.epage=49&rft.pages=37-49&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2019.01.046&rft_dat=%3Celsevier_osti_%3ES0378775319300564%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378775319300564&rfr_iscdi=true