Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations

•Full-cascade TRIM simulations provide valid predictions of damage production.•Quick TRIM simulations generally underestimate damage energy in monoatomic targets.•Quick TRIM simulations are not valid for multi-elemental targets.•Overestimation of electronic stopping powers can significantly affect d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in solid state & materials science 2019-08, Vol.23 (4), p.100757, Article 100757
Hauptverfasser: Weber, William J., Zhang, Yanwen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 100757
container_title Current opinion in solid state & materials science
container_volume 23
creator Weber, William J.
Zhang, Yanwen
description •Full-cascade TRIM simulations provide valid predictions of damage production.•Quick TRIM simulations generally underestimate damage energy in monoatomic targets.•Quick TRIM simulations are not valid for multi-elemental targets.•Overestimation of electronic stopping powers can significantly affect damage and range profiles. The computer code, Stopping and Range of Ions in Matter (SRIM), is widely used to describe energetic processes of ion-solid interactions; its predictive power relies on the accuracy of energy loss/transfer and collision processes being considered. While the SRIM code is commonly applied in radiation effects research to predict damage production and in the semiconductor industry to estimate ion range and dopant concentration profiles, two challenges exist that affect its use: (1) inconsistency in estimations of atomic displacements between full-cascade and quick (modified Kinchin–Pease) options and (2) overestimation of electronic stopping power for slow heavy ions in light targets (e.g., Be and Si) or in compound targets containing light elements (e.g., C, N and O in carbides, nitrides and oxides). Based on a literature review and our experimental investigations, we discuss the underlying reasons for the discrepancies, clarify the physical limitations of the SRIM predictions, and, more importantly, provide recommendations to address the two challenges.
doi_str_mv 10.1016/j.cossms.2019.06.001
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1532570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359028619300750</els_id><sourcerecordid>S1359028619300750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-3c890505a25ce8607cce9d06627bf324b8dfe7008de90ceb37ca55f33ac736a83</originalsourceid><addsrcrecordid>eNp9kMFq3DAQQH1IIdtN_iAH0bvdsWXJdg-FsqRtYCE5tGehHY13tdjSImkL-ZF8b-S6554kxJsn5hXFQw1VDbX8fK7QxzjHqoF6qEBWAPVNsam5GEpoenlbfIzxDACtlHJTvL0EMhaTdUdm9KyPxC7Bm2t-8Y5Zx2bvvE5-tsi0M2y-TsmWNNFMLumJJR2OlCK7xsUQk79clsuCBu2yzY8sm-JflU6JAkNv6AvbnfQ0USbiChP6OTuNXj6Od8WHUU-R7v-d2-L398dfu5_l_vnH0-7bvsS2Fank2A8gQOhGIPUSOkQaDEjZdIeRN-2hNyN1AL2hAZAOvEMtxMi5xo5L3fNt8Wn1-pisimgT4Qm9c4RJ1YI3ooMMtSuEIacNNKpLsLMOr6oGtURXZ7VGV0t0BVLl6Hns6zpGeYE_lsLiJ4e5d1j0xtv_C94BtOGS_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Weber, William J. ; Zhang, Yanwen</creator><creatorcontrib>Weber, William J. ; Zhang, Yanwen ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) ; Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE)</creatorcontrib><description>•Full-cascade TRIM simulations provide valid predictions of damage production.•Quick TRIM simulations generally underestimate damage energy in monoatomic targets.•Quick TRIM simulations are not valid for multi-elemental targets.•Overestimation of electronic stopping powers can significantly affect damage and range profiles. The computer code, Stopping and Range of Ions in Matter (SRIM), is widely used to describe energetic processes of ion-solid interactions; its predictive power relies on the accuracy of energy loss/transfer and collision processes being considered. While the SRIM code is commonly applied in radiation effects research to predict damage production and in the semiconductor industry to estimate ion range and dopant concentration profiles, two challenges exist that affect its use: (1) inconsistency in estimations of atomic displacements between full-cascade and quick (modified Kinchin–Pease) options and (2) overestimation of electronic stopping power for slow heavy ions in light targets (e.g., Be and Si) or in compound targets containing light elements (e.g., C, N and O in carbides, nitrides and oxides). Based on a literature review and our experimental investigations, we discuss the underlying reasons for the discrepancies, clarify the physical limitations of the SRIM predictions, and, more importantly, provide recommendations to address the two challenges.</description><identifier>ISSN: 1359-0286</identifier><identifier>DOI: 10.1016/j.cossms.2019.06.001</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Damage profile ; Displacements ; Full-cascade simulations ; Ion-solid interaction ; MATERIALS SCIENCE ; Stopping power</subject><ispartof>Current opinion in solid state &amp; materials science, 2019-08, Vol.23 (4), p.100757, Article 100757</ispartof><rights>2019 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-3c890505a25ce8607cce9d06627bf324b8dfe7008de90ceb37ca55f33ac736a83</citedby><cites>FETCH-LOGICAL-c445t-3c890505a25ce8607cce9d06627bf324b8dfe7008de90ceb37ca55f33ac736a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cossms.2019.06.001$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1532570$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Weber, William J.</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE)</creatorcontrib><title>Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations</title><title>Current opinion in solid state &amp; materials science</title><description>•Full-cascade TRIM simulations provide valid predictions of damage production.•Quick TRIM simulations generally underestimate damage energy in monoatomic targets.•Quick TRIM simulations are not valid for multi-elemental targets.•Overestimation of electronic stopping powers can significantly affect damage and range profiles. The computer code, Stopping and Range of Ions in Matter (SRIM), is widely used to describe energetic processes of ion-solid interactions; its predictive power relies on the accuracy of energy loss/transfer and collision processes being considered. While the SRIM code is commonly applied in radiation effects research to predict damage production and in the semiconductor industry to estimate ion range and dopant concentration profiles, two challenges exist that affect its use: (1) inconsistency in estimations of atomic displacements between full-cascade and quick (modified Kinchin–Pease) options and (2) overestimation of electronic stopping power for slow heavy ions in light targets (e.g., Be and Si) or in compound targets containing light elements (e.g., C, N and O in carbides, nitrides and oxides). Based on a literature review and our experimental investigations, we discuss the underlying reasons for the discrepancies, clarify the physical limitations of the SRIM predictions, and, more importantly, provide recommendations to address the two challenges.</description><subject>Damage profile</subject><subject>Displacements</subject><subject>Full-cascade simulations</subject><subject>Ion-solid interaction</subject><subject>MATERIALS SCIENCE</subject><subject>Stopping power</subject><issn>1359-0286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFq3DAQQH1IIdtN_iAH0bvdsWXJdg-FsqRtYCE5tGehHY13tdjSImkL-ZF8b-S6554kxJsn5hXFQw1VDbX8fK7QxzjHqoF6qEBWAPVNsam5GEpoenlbfIzxDACtlHJTvL0EMhaTdUdm9KyPxC7Bm2t-8Y5Zx2bvvE5-tsi0M2y-TsmWNNFMLumJJR2OlCK7xsUQk79clsuCBu2yzY8sm-JflU6JAkNv6AvbnfQ0USbiChP6OTuNXj6Od8WHUU-R7v-d2-L398dfu5_l_vnH0-7bvsS2Fank2A8gQOhGIPUSOkQaDEjZdIeRN-2hNyN1AL2hAZAOvEMtxMi5xo5L3fNt8Wn1-pisimgT4Qm9c4RJ1YI3ooMMtSuEIacNNKpLsLMOr6oGtURXZ7VGV0t0BVLl6Hns6zpGeYE_lsLiJ4e5d1j0xtv_C94BtOGS_A</recordid><startdate>201908</startdate><enddate>201908</enddate><creator>Weber, William J.</creator><creator>Zhang, Yanwen</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201908</creationdate><title>Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations</title><author>Weber, William J. ; Zhang, Yanwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-3c890505a25ce8607cce9d06627bf324b8dfe7008de90ceb37ca55f33ac736a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Damage profile</topic><topic>Displacements</topic><topic>Full-cascade simulations</topic><topic>Ion-solid interaction</topic><topic>MATERIALS SCIENCE</topic><topic>Stopping power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weber, William J.</creatorcontrib><creatorcontrib>Zhang, Yanwen</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Current opinion in solid state &amp; materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weber, William J.</au><au>Zhang, Yanwen</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Energy Dissipation to Defect Evolution (EDDE)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations</atitle><jtitle>Current opinion in solid state &amp; materials science</jtitle><date>2019-08</date><risdate>2019</risdate><volume>23</volume><issue>4</issue><spage>100757</spage><pages>100757-</pages><artnum>100757</artnum><issn>1359-0286</issn><abstract>•Full-cascade TRIM simulations provide valid predictions of damage production.•Quick TRIM simulations generally underestimate damage energy in monoatomic targets.•Quick TRIM simulations are not valid for multi-elemental targets.•Overestimation of electronic stopping powers can significantly affect damage and range profiles. The computer code, Stopping and Range of Ions in Matter (SRIM), is widely used to describe energetic processes of ion-solid interactions; its predictive power relies on the accuracy of energy loss/transfer and collision processes being considered. While the SRIM code is commonly applied in radiation effects research to predict damage production and in the semiconductor industry to estimate ion range and dopant concentration profiles, two challenges exist that affect its use: (1) inconsistency in estimations of atomic displacements between full-cascade and quick (modified Kinchin–Pease) options and (2) overestimation of electronic stopping power for slow heavy ions in light targets (e.g., Be and Si) or in compound targets containing light elements (e.g., C, N and O in carbides, nitrides and oxides). Based on a literature review and our experimental investigations, we discuss the underlying reasons for the discrepancies, clarify the physical limitations of the SRIM predictions, and, more importantly, provide recommendations to address the two challenges.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cossms.2019.06.001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-0286
ispartof Current opinion in solid state & materials science, 2019-08, Vol.23 (4), p.100757, Article 100757
issn 1359-0286
language eng
recordid cdi_osti_scitechconnect_1532570
source ScienceDirect Journals (5 years ago - present)
subjects Damage profile
Displacements
Full-cascade simulations
Ion-solid interaction
MATERIALS SCIENCE
Stopping power
title Predicting damage production in monoatomic and multi-elemental targets using stopping and range of ions in matter code: Challenges and recommendations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20damage%20production%20in%20monoatomic%20and%20multi-elemental%20targets%20using%20stopping%20and%20range%20of%20ions%20in%20matter%20code:%20Challenges%20and%20recommendations&rft.jtitle=Current%20opinion%20in%20solid%20state%20&%20materials%20science&rft.au=Weber,%20William%20J.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-08&rft.volume=23&rft.issue=4&rft.spage=100757&rft.pages=100757-&rft.artnum=100757&rft.issn=1359-0286&rft_id=info:doi/10.1016/j.cossms.2019.06.001&rft_dat=%3Celsevier_osti_%3ES1359028619300750%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359028619300750&rfr_iscdi=true