Cavitation-Induced Stiffness Reductions in Quantum Dot–Polymer Nanocomposites
The elastic stiffness of two polymer nanocomposite systems is investigated. The nanoscale fillers comprise cadmium selenide (CdSe, ∼4 nm) and cadmium selenide/cadmium sulfide (CdSe/CdS, ∼13 nm) quantum dots (QDs). The QDs are embedded within an electrospun structural block copolymer, poly(styrene-e...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2016-04, Vol.28 (8), p.2540-2549 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2549 |
---|---|
container_issue | 8 |
container_start_page | 2540 |
container_title | Chemistry of materials |
container_volume | 28 |
creator | Raja, Shilpa N Luong, Andrew J Zhang, Wencong Lin, Liwei Ritchie, Robert O Alivisatos, A. Paul |
description | The elastic stiffness of two polymer nanocomposite systems is investigated. The nanoscale fillers comprise cadmium selenide (CdSe, ∼4 nm) and cadmium selenide/cadmium sulfide (CdSe/CdS, ∼13 nm) quantum dots (QDs). The QDs are embedded within an electrospun structural block copolymer, poly(styrene-ethylene-butylene-styrene) (SEBS). Tensile testing shows a monotonic decrease in the tensile Young’s modulus with increasing partially phase-separated QD concentration; this is to be compared to corresponding nanocomposites reinforced with nanorod (NR) and tetrapod (TP)-SEBS nanocomposites which show a monotonic increase with particle loading. While most studies to date emphasize the increase in Young’s modulus in polymer nanocomposites at higher reinforcement loadings, few focus on the tunability of the modulus from reductions in stiffness. The present work reveals up to an ∼80% reduction in tensile Young’s modulus with the addition of 5 vol % of QDs to electrospun SEBS. In this study, we sought mechanistic insight into this reduction in composite stiffness using a 2D lattice spring model. Simulation results reveal that the stiffness decrease with the addition of QD reinforcements is likely due to cavitation in the polymer in the vicinity of the QD aggregates arising from polymer debonding under tension. We anticipate that this study, performed with a commonly used structural rubber, may find use in designing polymer–matrix nanocomposite fibers with specific Young’s moduli for applications requiring a tunable lower stiffness material. |
doi_str_mv | 10.1021/acs.chemmater.5b04165 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1532185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c305885102</sourcerecordid><originalsourceid>FETCH-LOGICAL-a369t-e786e0004021b4c5f78e464599859f277b5731ad4b579c6993301ad126888d983</originalsourceid><addsrcrecordid>eNqFUMtKAzEUDaJgrX6CMLifmszkuZT6KhTrcx0ymQxN6SQlyQjd-Q_-oV9iSotbV4d7zzn3cQC4RHCCYIWulY4TvTR9r5IJE9JAjCg5AiNEKlgSCKtjMIJcsBIzQk_BWYwrCFG28hFYTNWnTSpZ78qZawdt2uIt2a5zJsbi1eTOjouFdcXLoFwa-uLWp5-v72e_3vYmFE_Kee37jY82mXgOTjq1jubigGPwcX_3Pn0s54uH2fRmXqqailQaxqmBEOJ8f4M16Rg3mGIiBCeiqxhrCKuRanFGoakQdQ1ziSrKOW8Fr8fgaj_Xx2Rl1Hm3XmrvnNFJIlJXiJMsInuRDj7GYDq5CbZXYSsRlLvoZI5O_kUnD9FlH9r7dvTKD8HlV_7x_AJhAXcq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cavitation-Induced Stiffness Reductions in Quantum Dot–Polymer Nanocomposites</title><source>American Chemical Society Journals</source><creator>Raja, Shilpa N ; Luong, Andrew J ; Zhang, Wencong ; Lin, Liwei ; Ritchie, Robert O ; Alivisatos, A. Paul</creator><creatorcontrib>Raja, Shilpa N ; Luong, Andrew J ; Zhang, Wencong ; Lin, Liwei ; Ritchie, Robert O ; Alivisatos, A. Paul ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>The elastic stiffness of two polymer nanocomposite systems is investigated. The nanoscale fillers comprise cadmium selenide (CdSe, ∼4 nm) and cadmium selenide/cadmium sulfide (CdSe/CdS, ∼13 nm) quantum dots (QDs). The QDs are embedded within an electrospun structural block copolymer, poly(styrene-ethylene-butylene-styrene) (SEBS). Tensile testing shows a monotonic decrease in the tensile Young’s modulus with increasing partially phase-separated QD concentration; this is to be compared to corresponding nanocomposites reinforced with nanorod (NR) and tetrapod (TP)-SEBS nanocomposites which show a monotonic increase with particle loading. While most studies to date emphasize the increase in Young’s modulus in polymer nanocomposites at higher reinforcement loadings, few focus on the tunability of the modulus from reductions in stiffness. The present work reveals up to an ∼80% reduction in tensile Young’s modulus with the addition of 5 vol % of QDs to electrospun SEBS. In this study, we sought mechanistic insight into this reduction in composite stiffness using a 2D lattice spring model. Simulation results reveal that the stiffness decrease with the addition of QD reinforcements is likely due to cavitation in the polymer in the vicinity of the QD aggregates arising from polymer debonding under tension. We anticipate that this study, performed with a commonly used structural rubber, may find use in designing polymer–matrix nanocomposite fibers with specific Young’s moduli for applications requiring a tunable lower stiffness material.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/acs.chemmater.5b04165</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Chemistry of materials, 2016-04, Vol.28 (8), p.2540-2549</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a369t-e786e0004021b4c5f78e464599859f277b5731ad4b579c6993301ad126888d983</citedby><cites>FETCH-LOGICAL-a369t-e786e0004021b4c5f78e464599859f277b5731ad4b579c6993301ad126888d983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemmater.5b04165$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemmater.5b04165$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1532185$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Raja, Shilpa N</creatorcontrib><creatorcontrib>Luong, Andrew J</creatorcontrib><creatorcontrib>Zhang, Wencong</creatorcontrib><creatorcontrib>Lin, Liwei</creatorcontrib><creatorcontrib>Ritchie, Robert O</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Cavitation-Induced Stiffness Reductions in Quantum Dot–Polymer Nanocomposites</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>The elastic stiffness of two polymer nanocomposite systems is investigated. The nanoscale fillers comprise cadmium selenide (CdSe, ∼4 nm) and cadmium selenide/cadmium sulfide (CdSe/CdS, ∼13 nm) quantum dots (QDs). The QDs are embedded within an electrospun structural block copolymer, poly(styrene-ethylene-butylene-styrene) (SEBS). Tensile testing shows a monotonic decrease in the tensile Young’s modulus with increasing partially phase-separated QD concentration; this is to be compared to corresponding nanocomposites reinforced with nanorod (NR) and tetrapod (TP)-SEBS nanocomposites which show a monotonic increase with particle loading. While most studies to date emphasize the increase in Young’s modulus in polymer nanocomposites at higher reinforcement loadings, few focus on the tunability of the modulus from reductions in stiffness. The present work reveals up to an ∼80% reduction in tensile Young’s modulus with the addition of 5 vol % of QDs to electrospun SEBS. In this study, we sought mechanistic insight into this reduction in composite stiffness using a 2D lattice spring model. Simulation results reveal that the stiffness decrease with the addition of QD reinforcements is likely due to cavitation in the polymer in the vicinity of the QD aggregates arising from polymer debonding under tension. We anticipate that this study, performed with a commonly used structural rubber, may find use in designing polymer–matrix nanocomposite fibers with specific Young’s moduli for applications requiring a tunable lower stiffness material.</description><subject>MATERIALS SCIENCE</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKAzEUDaJgrX6CMLifmszkuZT6KhTrcx0ymQxN6SQlyQjd-Q_-oV9iSotbV4d7zzn3cQC4RHCCYIWulY4TvTR9r5IJE9JAjCg5AiNEKlgSCKtjMIJcsBIzQk_BWYwrCFG28hFYTNWnTSpZ78qZawdt2uIt2a5zJsbi1eTOjouFdcXLoFwa-uLWp5-v72e_3vYmFE_Kee37jY82mXgOTjq1jubigGPwcX_3Pn0s54uH2fRmXqqailQaxqmBEOJ8f4M16Rg3mGIiBCeiqxhrCKuRanFGoakQdQ1ziSrKOW8Fr8fgaj_Xx2Rl1Hm3XmrvnNFJIlJXiJMsInuRDj7GYDq5CbZXYSsRlLvoZI5O_kUnD9FlH9r7dvTKD8HlV_7x_AJhAXcq</recordid><startdate>20160426</startdate><enddate>20160426</enddate><creator>Raja, Shilpa N</creator><creator>Luong, Andrew J</creator><creator>Zhang, Wencong</creator><creator>Lin, Liwei</creator><creator>Ritchie, Robert O</creator><creator>Alivisatos, A. Paul</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160426</creationdate><title>Cavitation-Induced Stiffness Reductions in Quantum Dot–Polymer Nanocomposites</title><author>Raja, Shilpa N ; Luong, Andrew J ; Zhang, Wencong ; Lin, Liwei ; Ritchie, Robert O ; Alivisatos, A. Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a369t-e786e0004021b4c5f78e464599859f277b5731ad4b579c6993301ad126888d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raja, Shilpa N</creatorcontrib><creatorcontrib>Luong, Andrew J</creatorcontrib><creatorcontrib>Zhang, Wencong</creatorcontrib><creatorcontrib>Lin, Liwei</creatorcontrib><creatorcontrib>Ritchie, Robert O</creatorcontrib><creatorcontrib>Alivisatos, A. Paul</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raja, Shilpa N</au><au>Luong, Andrew J</au><au>Zhang, Wencong</au><au>Lin, Liwei</au><au>Ritchie, Robert O</au><au>Alivisatos, A. Paul</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cavitation-Induced Stiffness Reductions in Quantum Dot–Polymer Nanocomposites</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2016-04-26</date><risdate>2016</risdate><volume>28</volume><issue>8</issue><spage>2540</spage><epage>2549</epage><pages>2540-2549</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>The elastic stiffness of two polymer nanocomposite systems is investigated. The nanoscale fillers comprise cadmium selenide (CdSe, ∼4 nm) and cadmium selenide/cadmium sulfide (CdSe/CdS, ∼13 nm) quantum dots (QDs). The QDs are embedded within an electrospun structural block copolymer, poly(styrene-ethylene-butylene-styrene) (SEBS). Tensile testing shows a monotonic decrease in the tensile Young’s modulus with increasing partially phase-separated QD concentration; this is to be compared to corresponding nanocomposites reinforced with nanorod (NR) and tetrapod (TP)-SEBS nanocomposites which show a monotonic increase with particle loading. While most studies to date emphasize the increase in Young’s modulus in polymer nanocomposites at higher reinforcement loadings, few focus on the tunability of the modulus from reductions in stiffness. The present work reveals up to an ∼80% reduction in tensile Young’s modulus with the addition of 5 vol % of QDs to electrospun SEBS. In this study, we sought mechanistic insight into this reduction in composite stiffness using a 2D lattice spring model. Simulation results reveal that the stiffness decrease with the addition of QD reinforcements is likely due to cavitation in the polymer in the vicinity of the QD aggregates arising from polymer debonding under tension. We anticipate that this study, performed with a commonly used structural rubber, may find use in designing polymer–matrix nanocomposite fibers with specific Young’s moduli for applications requiring a tunable lower stiffness material.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.chemmater.5b04165</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2016-04, Vol.28 (8), p.2540-2549 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1532185 |
source | American Chemical Society Journals |
subjects | MATERIALS SCIENCE |
title | Cavitation-Induced Stiffness Reductions in Quantum Dot–Polymer Nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T22%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cavitation-Induced%20Stiffness%20Reductions%20in%20Quantum%20Dot%E2%80%93Polymer%20Nanocomposites&rft.jtitle=Chemistry%20of%20materials&rft.au=Raja,%20Shilpa%20N&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2016-04-26&rft.volume=28&rft.issue=8&rft.spage=2540&rft.epage=2549&rft.pages=2540-2549&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/acs.chemmater.5b04165&rft_dat=%3Cacs_osti_%3Ec305885102%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |