scarlet: Source separation in multi-band images by Constrained Matrix Factorization

We present the source separation framework scarlet for multi-band images, which is based on a generalization of the Non-negative Matrix Factorization to alternative and several simultaneous constraints. Our approach describes the observed scene as a mixture of components with compact spatial support...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and computing 2018-07, Vol.24 (C), p.129-142
Hauptverfasser: Melchior, P., Moolekamp, F., Jerdee, M., Armstrong, R., Sun, A.-L., Bosch, J., Lupton, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue C
container_start_page 129
container_title Astronomy and computing
container_volume 24
creator Melchior, P.
Moolekamp, F.
Jerdee, M.
Armstrong, R.
Sun, A.-L.
Bosch, J.
Lupton, R.
description We present the source separation framework scarlet for multi-band images, which is based on a generalization of the Non-negative Matrix Factorization to alternative and several simultaneous constraints. Our approach describes the observed scene as a mixture of components with compact spatial support and uniform spectra over their support. We present the algorithm to perform the matrix factorization and introduce constraints that are useful for optical images of stars and distinct stellar populations in galaxies, in particular symmetry and monotonicity with respect to the source peak position. We also derive the treatment of correlated noise and convolutions with band-dependent point spread functions, rendering our approach applicable to coadded images observed under variable seeing conditions. scarlet thus yields a PSF-matched photometry measurement with an optimally chosen weight function given by the mean morphology in all available bands. We demonstrate the performance of scarlet for deblending crowded extragalactic scenes and on an AGN jet–host galaxy separation problem in deep 5-band imaging from the Hyper Suprime-Cam Strategic Survey Program. Using simulations with prominent crowding we show that scarlet yields superior results to the HSC-SDSS deblender for the recovery of total fluxes, colors, and morphologies. Due to its non-parametric nature, a conceptual limitation of scarlet is its sensitivity to undetected sources or multiple stellar population within detected sources, but an iterative strategy that adds components at the location of significant residuals appears promising. The code is implemented in Python with C++ extensions and is available at https://github.com/fred3m/scarlet.
doi_str_mv 10.1016/j.ascom.2018.07.001
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1531192</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2213133718300301</els_id><sourcerecordid>S2213133718300301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-450485c4b2d1981c1cfb2972e35ae0db69798518e1e68769e86f574e4b6028153</originalsourceid><addsrcrecordid>eNp9kEFLAzEQhYMoWGp_gZfgfddMNrubFTxIsSpUPFTPIZudakqblCQV6693txWPzmUG5n2PmUfIJbAcGFTXq1xH4zc5ZyBzVueMwQkZcQ5FBoUoT__moj4nkxhXrK9GQMnliCyi0WGN6YYu_C4YpBG3OuhkvaPW0c1unWzWatdRu9HvGGm7p1PvYgraOuzos07BftGZNskH-30AL8jZUq8jTn77mLzN7l-nj9n85eFpejfPjBCQMlEyIUsjWt5BI8GAWba8qTkWpUbWtVVTN7IEiYCVrKsGZbUsa4GirRiXUBZjcnX09TFZFY1NaD6Mdw5NUv0eoOG9qDiKTPAxBlyqbehfCXsFTA35qZU65KeG_BSrVZ9fT90eKezv_7QYBnt0BjsbBvfO23_5HxgEeTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>scarlet: Source separation in multi-band images by Constrained Matrix Factorization</title><source>Alma/SFX Local Collection</source><creator>Melchior, P. ; Moolekamp, F. ; Jerdee, M. ; Armstrong, R. ; Sun, A.-L. ; Bosch, J. ; Lupton, R.</creator><creatorcontrib>Melchior, P. ; Moolekamp, F. ; Jerdee, M. ; Armstrong, R. ; Sun, A.-L. ; Bosch, J. ; Lupton, R.</creatorcontrib><description>We present the source separation framework scarlet for multi-band images, which is based on a generalization of the Non-negative Matrix Factorization to alternative and several simultaneous constraints. Our approach describes the observed scene as a mixture of components with compact spatial support and uniform spectra over their support. We present the algorithm to perform the matrix factorization and introduce constraints that are useful for optical images of stars and distinct stellar populations in galaxies, in particular symmetry and monotonicity with respect to the source peak position. We also derive the treatment of correlated noise and convolutions with band-dependent point spread functions, rendering our approach applicable to coadded images observed under variable seeing conditions. scarlet thus yields a PSF-matched photometry measurement with an optimally chosen weight function given by the mean morphology in all available bands. We demonstrate the performance of scarlet for deblending crowded extragalactic scenes and on an AGN jet–host galaxy separation problem in deep 5-band imaging from the Hyper Suprime-Cam Strategic Survey Program. Using simulations with prominent crowding we show that scarlet yields superior results to the HSC-SDSS deblender for the recovery of total fluxes, colors, and morphologies. Due to its non-parametric nature, a conceptual limitation of scarlet is its sensitivity to undetected sources or multiple stellar population within detected sources, but an iterative strategy that adds components at the location of significant residuals appears promising. The code is implemented in Python with C++ extensions and is available at https://github.com/fred3m/scarlet.</description><identifier>ISSN: 2213-1337</identifier><identifier>EISSN: 2213-1345</identifier><identifier>DOI: 10.1016/j.ascom.2018.07.001</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Data analysis ; Galaxies ; Image processing ; Methods ; Non-negative matrix factorization ; Techniques</subject><ispartof>Astronomy and computing, 2018-07, Vol.24 (C), p.129-142</ispartof><rights>2018 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-450485c4b2d1981c1cfb2972e35ae0db69798518e1e68769e86f574e4b6028153</citedby><cites>FETCH-LOGICAL-c441t-450485c4b2d1981c1cfb2972e35ae0db69798518e1e68769e86f574e4b6028153</cites><orcidid>0000-0002-8873-5065 ; 0000-0003-0093-4279 ; 0000-0003-2759-5764 ; 0000000300934279 ; 0000000288735065 ; 0000000327595764</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1531192$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Melchior, P.</creatorcontrib><creatorcontrib>Moolekamp, F.</creatorcontrib><creatorcontrib>Jerdee, M.</creatorcontrib><creatorcontrib>Armstrong, R.</creatorcontrib><creatorcontrib>Sun, A.-L.</creatorcontrib><creatorcontrib>Bosch, J.</creatorcontrib><creatorcontrib>Lupton, R.</creatorcontrib><title>scarlet: Source separation in multi-band images by Constrained Matrix Factorization</title><title>Astronomy and computing</title><description>We present the source separation framework scarlet for multi-band images, which is based on a generalization of the Non-negative Matrix Factorization to alternative and several simultaneous constraints. Our approach describes the observed scene as a mixture of components with compact spatial support and uniform spectra over their support. We present the algorithm to perform the matrix factorization and introduce constraints that are useful for optical images of stars and distinct stellar populations in galaxies, in particular symmetry and monotonicity with respect to the source peak position. We also derive the treatment of correlated noise and convolutions with band-dependent point spread functions, rendering our approach applicable to coadded images observed under variable seeing conditions. scarlet thus yields a PSF-matched photometry measurement with an optimally chosen weight function given by the mean morphology in all available bands. We demonstrate the performance of scarlet for deblending crowded extragalactic scenes and on an AGN jet–host galaxy separation problem in deep 5-band imaging from the Hyper Suprime-Cam Strategic Survey Program. Using simulations with prominent crowding we show that scarlet yields superior results to the HSC-SDSS deblender for the recovery of total fluxes, colors, and morphologies. Due to its non-parametric nature, a conceptual limitation of scarlet is its sensitivity to undetected sources or multiple stellar population within detected sources, but an iterative strategy that adds components at the location of significant residuals appears promising. The code is implemented in Python with C++ extensions and is available at https://github.com/fred3m/scarlet.</description><subject>Data analysis</subject><subject>Galaxies</subject><subject>Image processing</subject><subject>Methods</subject><subject>Non-negative matrix factorization</subject><subject>Techniques</subject><issn>2213-1337</issn><issn>2213-1345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEQhYMoWGp_gZfgfddMNrubFTxIsSpUPFTPIZudakqblCQV6693txWPzmUG5n2PmUfIJbAcGFTXq1xH4zc5ZyBzVueMwQkZcQ5FBoUoT__moj4nkxhXrK9GQMnliCyi0WGN6YYu_C4YpBG3OuhkvaPW0c1unWzWatdRu9HvGGm7p1PvYgraOuzos07BftGZNskH-30AL8jZUq8jTn77mLzN7l-nj9n85eFpejfPjBCQMlEyIUsjWt5BI8GAWba8qTkWpUbWtVVTN7IEiYCVrKsGZbUsa4GirRiXUBZjcnX09TFZFY1NaD6Mdw5NUv0eoOG9qDiKTPAxBlyqbehfCXsFTA35qZU65KeG_BSrVZ9fT90eKezv_7QYBnt0BjsbBvfO23_5HxgEeTA</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Melchior, P.</creator><creator>Moolekamp, F.</creator><creator>Jerdee, M.</creator><creator>Armstrong, R.</creator><creator>Sun, A.-L.</creator><creator>Bosch, J.</creator><creator>Lupton, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8873-5065</orcidid><orcidid>https://orcid.org/0000-0003-0093-4279</orcidid><orcidid>https://orcid.org/0000-0003-2759-5764</orcidid><orcidid>https://orcid.org/0000000300934279</orcidid><orcidid>https://orcid.org/0000000288735065</orcidid><orcidid>https://orcid.org/0000000327595764</orcidid></search><sort><creationdate>201807</creationdate><title>scarlet: Source separation in multi-band images by Constrained Matrix Factorization</title><author>Melchior, P. ; Moolekamp, F. ; Jerdee, M. ; Armstrong, R. ; Sun, A.-L. ; Bosch, J. ; Lupton, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-450485c4b2d1981c1cfb2972e35ae0db69798518e1e68769e86f574e4b6028153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Data analysis</topic><topic>Galaxies</topic><topic>Image processing</topic><topic>Methods</topic><topic>Non-negative matrix factorization</topic><topic>Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melchior, P.</creatorcontrib><creatorcontrib>Moolekamp, F.</creatorcontrib><creatorcontrib>Jerdee, M.</creatorcontrib><creatorcontrib>Armstrong, R.</creatorcontrib><creatorcontrib>Sun, A.-L.</creatorcontrib><creatorcontrib>Bosch, J.</creatorcontrib><creatorcontrib>Lupton, R.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Astronomy and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melchior, P.</au><au>Moolekamp, F.</au><au>Jerdee, M.</au><au>Armstrong, R.</au><au>Sun, A.-L.</au><au>Bosch, J.</au><au>Lupton, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>scarlet: Source separation in multi-band images by Constrained Matrix Factorization</atitle><jtitle>Astronomy and computing</jtitle><date>2018-07</date><risdate>2018</risdate><volume>24</volume><issue>C</issue><spage>129</spage><epage>142</epage><pages>129-142</pages><issn>2213-1337</issn><eissn>2213-1345</eissn><abstract>We present the source separation framework scarlet for multi-band images, which is based on a generalization of the Non-negative Matrix Factorization to alternative and several simultaneous constraints. Our approach describes the observed scene as a mixture of components with compact spatial support and uniform spectra over their support. We present the algorithm to perform the matrix factorization and introduce constraints that are useful for optical images of stars and distinct stellar populations in galaxies, in particular symmetry and monotonicity with respect to the source peak position. We also derive the treatment of correlated noise and convolutions with band-dependent point spread functions, rendering our approach applicable to coadded images observed under variable seeing conditions. scarlet thus yields a PSF-matched photometry measurement with an optimally chosen weight function given by the mean morphology in all available bands. We demonstrate the performance of scarlet for deblending crowded extragalactic scenes and on an AGN jet–host galaxy separation problem in deep 5-band imaging from the Hyper Suprime-Cam Strategic Survey Program. Using simulations with prominent crowding we show that scarlet yields superior results to the HSC-SDSS deblender for the recovery of total fluxes, colors, and morphologies. Due to its non-parametric nature, a conceptual limitation of scarlet is its sensitivity to undetected sources or multiple stellar population within detected sources, but an iterative strategy that adds components at the location of significant residuals appears promising. The code is implemented in Python with C++ extensions and is available at https://github.com/fred3m/scarlet.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ascom.2018.07.001</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8873-5065</orcidid><orcidid>https://orcid.org/0000-0003-0093-4279</orcidid><orcidid>https://orcid.org/0000-0003-2759-5764</orcidid><orcidid>https://orcid.org/0000000300934279</orcidid><orcidid>https://orcid.org/0000000288735065</orcidid><orcidid>https://orcid.org/0000000327595764</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2213-1337
ispartof Astronomy and computing, 2018-07, Vol.24 (C), p.129-142
issn 2213-1337
2213-1345
language eng
recordid cdi_osti_scitechconnect_1531192
source Alma/SFX Local Collection
subjects Data analysis
Galaxies
Image processing
Methods
Non-negative matrix factorization
Techniques
title scarlet: Source separation in multi-band images by Constrained Matrix Factorization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=scarlet:%20Source%20separation%20in%20multi-band%20images%20by%20Constrained%20Matrix%20Factorization&rft.jtitle=Astronomy%20and%20computing&rft.au=Melchior,%20P.&rft.date=2018-07&rft.volume=24&rft.issue=C&rft.spage=129&rft.epage=142&rft.pages=129-142&rft.issn=2213-1337&rft.eissn=2213-1345&rft_id=info:doi/10.1016/j.ascom.2018.07.001&rft_dat=%3Celsevier_osti_%3ES2213133718300301%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2213133718300301&rfr_iscdi=true