On choosing the resolution of normative models

•We study the design of normative models, frequently used for planning purposes.•We relate intuitive goals of model formulation to information theoretic concepts.•We develop principles for trading off accuracy of representation versus parsimony.•We develop a ‘modeling roadmap’ to help modeling commu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2019-12, Vol.279 (2), p.511-523
Hauptverfasser: Merrick, James H., Weyant, John P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 523
container_issue 2
container_start_page 511
container_title European journal of operational research
container_volume 279
creator Merrick, James H.
Weyant, John P.
description •We study the design of normative models, frequently used for planning purposes.•We relate intuitive goals of model formulation to information theoretic concepts.•We develop principles for trading off accuracy of representation versus parsimony.•We develop a ‘modeling roadmap’ to help modeling community apply the ideas. Long time horizon normative models are frequently used for policy analysis, strategic planning, and system analysis. Choosing the granularity of the temporal or spatial resolution of such models is an important modeling decision, often having a first order impact on model results. This type of decision is frequently made by modeler judgment, particularly when the predictive power of alternative choices cannot be tested. In this paper, we show how the implicit tradeoffs modelers make in these formulation decisions, in particular in the tradeoff between the accuracy of representation enabled by the available data and model parsimony, may be addressed with established information theoretic ideas. The paper provides guidance for modelers making these tradeoffs or, in certain cases, enables explicit tests for assessing appropriate levels of resolution. We will mainly focus on optimization based normative models in the discussion here, and draw our examples from the energy and climate domain.
doi_str_mv 10.1016/j.ejor.2019.06.017
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1530702</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0377221719304928</els_id><sourcerecordid>S0377221719304928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-34cf93a7e97def989c40b583acaac4a5f657bf64af292e88a6c605a348b7080e3</originalsourceid><addsrcrecordid>eNp9kM1KAzEURoMoWKsv4GpwP-NNMpNkwI0U_6DQja5DmrmxGdpEkljw7Z2hrl3dzXcO3EPILYWGAhX3Y4NjTA0D2jcgGqDyjCyokqwWSsA5WQCXsmaMyktylfMIALSj3YI0m1DZXYzZh8-q7LBKmOP-u_gYquiqENPBFH_E6hAH3OdrcuHMPuPN312Sj-en99Vrvd68vK0e17VtuSg1b63ruZHYywFdr3rbwrZT3FhjbGs6Jzq5daI1jvUMlTLCCugMb9VWggLkS3J38sZcvM7WF7Q7G0NAWzTtOEhg04idRjbFnBM6_ZX8waQfTUHPWfSo5yx6zqJB6CnLBD2coOkbPHpMsx2DxcGnWT5E_x_-C3Gjayg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On choosing the resolution of normative models</title><source>Elsevier ScienceDirect Journals</source><creator>Merrick, James H. ; Weyant, John P.</creator><creatorcontrib>Merrick, James H. ; Weyant, John P. ; Stanford Univ., CA (United States)</creatorcontrib><description>•We study the design of normative models, frequently used for planning purposes.•We relate intuitive goals of model formulation to information theoretic concepts.•We develop principles for trading off accuracy of representation versus parsimony.•We develop a ‘modeling roadmap’ to help modeling community apply the ideas. Long time horizon normative models are frequently used for policy analysis, strategic planning, and system analysis. Choosing the granularity of the temporal or spatial resolution of such models is an important modeling decision, often having a first order impact on model results. This type of decision is frequently made by modeler judgment, particularly when the predictive power of alternative choices cannot be tested. In this paper, we show how the implicit tradeoffs modelers make in these formulation decisions, in particular in the tradeoff between the accuracy of representation enabled by the available data and model parsimony, may be addressed with established information theoretic ideas. The paper provides guidance for modelers making these tradeoffs or, in certain cases, enables explicit tests for assessing appropriate levels of resolution. We will mainly focus on optimization based normative models in the discussion here, and draw our examples from the energy and climate domain.</description><identifier>ISSN: 0377-2217</identifier><identifier>EISSN: 1872-6860</identifier><identifier>DOI: 10.1016/j.ejor.2019.06.017</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Information theory ; KNOWLEDGE MANAGEMENT AND PRESERVATION ; MATHEMATICS AND COMPUTING ; OR in environment and climate change ; Problem structuring ; Strategic planning ; Validation of OR computations</subject><ispartof>European journal of operational research, 2019-12, Vol.279 (2), p.511-523</ispartof><rights>2019 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-34cf93a7e97def989c40b583acaac4a5f657bf64af292e88a6c605a348b7080e3</citedby><cites>FETCH-LOGICAL-c436t-34cf93a7e97def989c40b583acaac4a5f657bf64af292e88a6c605a348b7080e3</cites><orcidid>0000-0001-5224-7337 ; 0000000152247337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0377221719304928$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1530702$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Merrick, James H.</creatorcontrib><creatorcontrib>Weyant, John P.</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><title>On choosing the resolution of normative models</title><title>European journal of operational research</title><description>•We study the design of normative models, frequently used for planning purposes.•We relate intuitive goals of model formulation to information theoretic concepts.•We develop principles for trading off accuracy of representation versus parsimony.•We develop a ‘modeling roadmap’ to help modeling community apply the ideas. Long time horizon normative models are frequently used for policy analysis, strategic planning, and system analysis. Choosing the granularity of the temporal or spatial resolution of such models is an important modeling decision, often having a first order impact on model results. This type of decision is frequently made by modeler judgment, particularly when the predictive power of alternative choices cannot be tested. In this paper, we show how the implicit tradeoffs modelers make in these formulation decisions, in particular in the tradeoff between the accuracy of representation enabled by the available data and model parsimony, may be addressed with established information theoretic ideas. The paper provides guidance for modelers making these tradeoffs or, in certain cases, enables explicit tests for assessing appropriate levels of resolution. We will mainly focus on optimization based normative models in the discussion here, and draw our examples from the energy and climate domain.</description><subject>Information theory</subject><subject>KNOWLEDGE MANAGEMENT AND PRESERVATION</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>OR in environment and climate change</subject><subject>Problem structuring</subject><subject>Strategic planning</subject><subject>Validation of OR computations</subject><issn>0377-2217</issn><issn>1872-6860</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEURoMoWKsv4GpwP-NNMpNkwI0U_6DQja5DmrmxGdpEkljw7Z2hrl3dzXcO3EPILYWGAhX3Y4NjTA0D2jcgGqDyjCyokqwWSsA5WQCXsmaMyktylfMIALSj3YI0m1DZXYzZh8-q7LBKmOP-u_gYquiqENPBFH_E6hAH3OdrcuHMPuPN312Sj-en99Vrvd68vK0e17VtuSg1b63ruZHYywFdr3rbwrZT3FhjbGs6Jzq5daI1jvUMlTLCCugMb9VWggLkS3J38sZcvM7WF7Q7G0NAWzTtOEhg04idRjbFnBM6_ZX8waQfTUHPWfSo5yx6zqJB6CnLBD2coOkbPHpMsx2DxcGnWT5E_x_-C3Gjayg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Merrick, James H.</creator><creator>Weyant, John P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5224-7337</orcidid><orcidid>https://orcid.org/0000000152247337</orcidid></search><sort><creationdate>20191201</creationdate><title>On choosing the resolution of normative models</title><author>Merrick, James H. ; Weyant, John P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-34cf93a7e97def989c40b583acaac4a5f657bf64af292e88a6c605a348b7080e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Information theory</topic><topic>KNOWLEDGE MANAGEMENT AND PRESERVATION</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>OR in environment and climate change</topic><topic>Problem structuring</topic><topic>Strategic planning</topic><topic>Validation of OR computations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Merrick, James H.</creatorcontrib><creatorcontrib>Weyant, John P.</creatorcontrib><creatorcontrib>Stanford Univ., CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Merrick, James H.</au><au>Weyant, John P.</au><aucorp>Stanford Univ., CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On choosing the resolution of normative models</atitle><jtitle>European journal of operational research</jtitle><date>2019-12-01</date><risdate>2019</risdate><volume>279</volume><issue>2</issue><spage>511</spage><epage>523</epage><pages>511-523</pages><issn>0377-2217</issn><eissn>1872-6860</eissn><abstract>•We study the design of normative models, frequently used for planning purposes.•We relate intuitive goals of model formulation to information theoretic concepts.•We develop principles for trading off accuracy of representation versus parsimony.•We develop a ‘modeling roadmap’ to help modeling community apply the ideas. Long time horizon normative models are frequently used for policy analysis, strategic planning, and system analysis. Choosing the granularity of the temporal or spatial resolution of such models is an important modeling decision, often having a first order impact on model results. This type of decision is frequently made by modeler judgment, particularly when the predictive power of alternative choices cannot be tested. In this paper, we show how the implicit tradeoffs modelers make in these formulation decisions, in particular in the tradeoff between the accuracy of representation enabled by the available data and model parsimony, may be addressed with established information theoretic ideas. The paper provides guidance for modelers making these tradeoffs or, in certain cases, enables explicit tests for assessing appropriate levels of resolution. We will mainly focus on optimization based normative models in the discussion here, and draw our examples from the energy and climate domain.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ejor.2019.06.017</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5224-7337</orcidid><orcidid>https://orcid.org/0000000152247337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2019-12, Vol.279 (2), p.511-523
issn 0377-2217
1872-6860
language eng
recordid cdi_osti_scitechconnect_1530702
source Elsevier ScienceDirect Journals
subjects Information theory
KNOWLEDGE MANAGEMENT AND PRESERVATION
MATHEMATICS AND COMPUTING
OR in environment and climate change
Problem structuring
Strategic planning
Validation of OR computations
title On choosing the resolution of normative models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20choosing%20the%20resolution%20of%20normative%20models&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Merrick,%20James%20H.&rft.aucorp=Stanford%20Univ.,%20CA%20(United%20States)&rft.date=2019-12-01&rft.volume=279&rft.issue=2&rft.spage=511&rft.epage=523&rft.pages=511-523&rft.issn=0377-2217&rft.eissn=1872-6860&rft_id=info:doi/10.1016/j.ejor.2019.06.017&rft_dat=%3Celsevier_osti_%3ES0377221719304928%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0377221719304928&rfr_iscdi=true