Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X‑ray Absorption Spectroscopy

As the lightest and cheapest transition metal dichalcogenide, TiS2 possesses great potential as an electrode material for lithium batteries due to the advantages of high energy density storage capability, fast ion diffusion rate, and low volume expansion. Despite the extensive investigation of its e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2018-07, Vol.18 (7), p.4506-4515
Hauptverfasser: Zhang, Liang, Sun, Dan, Kang, Jun, Wang, Hsiao-Tsu, Hsieh, Shang-Hsien, Pong, Way-Faung, Bechtel, Hans A, Feng, Jun, Wang, Lin-Wang, Cairns, Elton J, Guo, Jinghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4515
container_issue 7
container_start_page 4506
container_title Nano letters
container_volume 18
creator Zhang, Liang
Sun, Dan
Kang, Jun
Wang, Hsiao-Tsu
Hsieh, Shang-Hsien
Pong, Way-Faung
Bechtel, Hans A
Feng, Jun
Wang, Lin-Wang
Cairns, Elton J
Guo, Jinghua
description As the lightest and cheapest transition metal dichalcogenide, TiS2 possesses great potential as an electrode material for lithium batteries due to the advantages of high energy density storage capability, fast ion diffusion rate, and low volume expansion. Despite the extensive investigation of its electrochemical properties, the fundamental discharge–charge reaction mechanism of the TiS2 electrode is still elusive. Here, by a combination of ex situ and operando X-ray absorption spectroscopy with density functional theory calculations, we have clearly elucidated the evolution of the structural and chemical properties of TiS2 during the discharge–charge processes. The lithium intercalation reaction is highly reversible and both Ti and sulfur are involved in the redox reaction during the discharge and charge processes. In contrast, the conversion reaction of TiS2 is partially reversible in the first cycle. However, TiO related compounds are developed during electrochemical cycling over extended cycles, which results in the decrease of the conversion reaction reversibility and the rapid capacity fading. In addition, the solid electrolyte interphase formed on the electrode surface is found to be highly dynamic in the initial cycles and then gradually becomes more stable upon further cycling. Such understanding is important for the future design and optimization of TiS2 based electrodes for lithium batteries.
doi_str_mv 10.1021/acs.nanolett.8b01680
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1530367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2049559077</sourcerecordid><originalsourceid>FETCH-LOGICAL-a407t-cb44f5fed0a4cccfe5d1d661839b09d1ab0c0b92e11a110a0fc556c32be1c7743</originalsourceid><addsrcrecordid>eNo9kb9OwzAQhyMEEqXwBgwWE0vKOX-bsaoKVKrUoa3EZjkXh7qkdrAdpG7sTLwiT0KSFiafT58-3d3P824pjCgE9IGjHSmudCWcG41zoMkYzrwBjUPwkywLzv_rcXTpXVm7A4AsjGHgfa0NxzepXonbCjLdir1EXhGuCrJypkHXmPY7-9BV46RWRJc9uJargMwqgc7oQhCp-u5Cuq1s9v68BaeiqsjGduZlLUwr1OTl5_Pb8AOZ5Fabuvet6t5hUdeHa--i5JUVN6d36G0eZ-vps79YPs2nk4XPI0idj3kUlXEpCuARIpYiLmiRJHQcZjlkBeU5IORZICjllAKHEuM4wTDIBcU0jcKhd3f0ausksyidwC1qpdpRWHeoMElb6P4I1Ua_N8I6tpcW26W4ErqxLIAoi-MM0g6FI9rmwHa6MaqdnlFgXTisa_6Fw07hhL_cNYkS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049559077</pqid></control><display><type>article</type><title>Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X‑ray Absorption Spectroscopy</title><source>American Chemical Society</source><creator>Zhang, Liang ; Sun, Dan ; Kang, Jun ; Wang, Hsiao-Tsu ; Hsieh, Shang-Hsien ; Pong, Way-Faung ; Bechtel, Hans A ; Feng, Jun ; Wang, Lin-Wang ; Cairns, Elton J ; Guo, Jinghua</creator><creatorcontrib>Zhang, Liang ; Sun, Dan ; Kang, Jun ; Wang, Hsiao-Tsu ; Hsieh, Shang-Hsien ; Pong, Way-Faung ; Bechtel, Hans A ; Feng, Jun ; Wang, Lin-Wang ; Cairns, Elton J ; Guo, Jinghua ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>As the lightest and cheapest transition metal dichalcogenide, TiS2 possesses great potential as an electrode material for lithium batteries due to the advantages of high energy density storage capability, fast ion diffusion rate, and low volume expansion. Despite the extensive investigation of its electrochemical properties, the fundamental discharge–charge reaction mechanism of the TiS2 electrode is still elusive. Here, by a combination of ex situ and operando X-ray absorption spectroscopy with density functional theory calculations, we have clearly elucidated the evolution of the structural and chemical properties of TiS2 during the discharge–charge processes. The lithium intercalation reaction is highly reversible and both Ti and sulfur are involved in the redox reaction during the discharge and charge processes. In contrast, the conversion reaction of TiS2 is partially reversible in the first cycle. However, TiO related compounds are developed during electrochemical cycling over extended cycles, which results in the decrease of the conversion reaction reversibility and the rapid capacity fading. In addition, the solid electrolyte interphase formed on the electrode surface is found to be highly dynamic in the initial cycles and then gradually becomes more stable upon further cycling. Such understanding is important for the future design and optimization of TiS2 based electrodes for lithium batteries.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/acs.nanolett.8b01680</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>electronic structure ; ENERGY STORAGE ; in situ and operando ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Lithium ion batteries ; MATERIALS SCIENCE ; TiS2 ; X-ray absorption spectroscopy</subject><ispartof>Nano letters, 2018-07, Vol.18 (7), p.4506-4515</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3446-3172 ; 0000-0002-1179-7591 ; 0000-0002-8576-2172 ; 0000000211797591 ; 0000000285762172 ; 0000000234463172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.nanolett.8b01680$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.nanolett.8b01680$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1530367$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><creatorcontrib>Kang, Jun</creatorcontrib><creatorcontrib>Wang, Hsiao-Tsu</creatorcontrib><creatorcontrib>Hsieh, Shang-Hsien</creatorcontrib><creatorcontrib>Pong, Way-Faung</creatorcontrib><creatorcontrib>Bechtel, Hans A</creatorcontrib><creatorcontrib>Feng, Jun</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><creatorcontrib>Cairns, Elton J</creatorcontrib><creatorcontrib>Guo, Jinghua</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X‑ray Absorption Spectroscopy</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>As the lightest and cheapest transition metal dichalcogenide, TiS2 possesses great potential as an electrode material for lithium batteries due to the advantages of high energy density storage capability, fast ion diffusion rate, and low volume expansion. Despite the extensive investigation of its electrochemical properties, the fundamental discharge–charge reaction mechanism of the TiS2 electrode is still elusive. Here, by a combination of ex situ and operando X-ray absorption spectroscopy with density functional theory calculations, we have clearly elucidated the evolution of the structural and chemical properties of TiS2 during the discharge–charge processes. The lithium intercalation reaction is highly reversible and both Ti and sulfur are involved in the redox reaction during the discharge and charge processes. In contrast, the conversion reaction of TiS2 is partially reversible in the first cycle. However, TiO related compounds are developed during electrochemical cycling over extended cycles, which results in the decrease of the conversion reaction reversibility and the rapid capacity fading. In addition, the solid electrolyte interphase formed on the electrode surface is found to be highly dynamic in the initial cycles and then gradually becomes more stable upon further cycling. Such understanding is important for the future design and optimization of TiS2 based electrodes for lithium batteries.</description><subject>electronic structure</subject><subject>ENERGY STORAGE</subject><subject>in situ and operando</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Lithium ion batteries</subject><subject>MATERIALS SCIENCE</subject><subject>TiS2</subject><subject>X-ray absorption spectroscopy</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kb9OwzAQhyMEEqXwBgwWE0vKOX-bsaoKVKrUoa3EZjkXh7qkdrAdpG7sTLwiT0KSFiafT58-3d3P824pjCgE9IGjHSmudCWcG41zoMkYzrwBjUPwkywLzv_rcXTpXVm7A4AsjGHgfa0NxzepXonbCjLdir1EXhGuCrJypkHXmPY7-9BV46RWRJc9uJargMwqgc7oQhCp-u5Cuq1s9v68BaeiqsjGduZlLUwr1OTl5_Pb8AOZ5Fabuvet6t5hUdeHa--i5JUVN6d36G0eZ-vps79YPs2nk4XPI0idj3kUlXEpCuARIpYiLmiRJHQcZjlkBeU5IORZICjllAKHEuM4wTDIBcU0jcKhd3f0ausksyidwC1qpdpRWHeoMElb6P4I1Ua_N8I6tpcW26W4ErqxLIAoi-MM0g6FI9rmwHa6MaqdnlFgXTisa_6Fw07hhL_cNYkS</recordid><startdate>20180711</startdate><enddate>20180711</enddate><creator>Zhang, Liang</creator><creator>Sun, Dan</creator><creator>Kang, Jun</creator><creator>Wang, Hsiao-Tsu</creator><creator>Hsieh, Shang-Hsien</creator><creator>Pong, Way-Faung</creator><creator>Bechtel, Hans A</creator><creator>Feng, Jun</creator><creator>Wang, Lin-Wang</creator><creator>Cairns, Elton J</creator><creator>Guo, Jinghua</creator><general>American Chemical Society</general><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-3446-3172</orcidid><orcidid>https://orcid.org/0000-0002-1179-7591</orcidid><orcidid>https://orcid.org/0000-0002-8576-2172</orcidid><orcidid>https://orcid.org/0000000211797591</orcidid><orcidid>https://orcid.org/0000000285762172</orcidid><orcidid>https://orcid.org/0000000234463172</orcidid></search><sort><creationdate>20180711</creationdate><title>Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X‑ray Absorption Spectroscopy</title><author>Zhang, Liang ; Sun, Dan ; Kang, Jun ; Wang, Hsiao-Tsu ; Hsieh, Shang-Hsien ; Pong, Way-Faung ; Bechtel, Hans A ; Feng, Jun ; Wang, Lin-Wang ; Cairns, Elton J ; Guo, Jinghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a407t-cb44f5fed0a4cccfe5d1d661839b09d1ab0c0b92e11a110a0fc556c32be1c7743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>electronic structure</topic><topic>ENERGY STORAGE</topic><topic>in situ and operando</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Lithium ion batteries</topic><topic>MATERIALS SCIENCE</topic><topic>TiS2</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liang</creatorcontrib><creatorcontrib>Sun, Dan</creatorcontrib><creatorcontrib>Kang, Jun</creatorcontrib><creatorcontrib>Wang, Hsiao-Tsu</creatorcontrib><creatorcontrib>Hsieh, Shang-Hsien</creatorcontrib><creatorcontrib>Pong, Way-Faung</creatorcontrib><creatorcontrib>Bechtel, Hans A</creatorcontrib><creatorcontrib>Feng, Jun</creatorcontrib><creatorcontrib>Wang, Lin-Wang</creatorcontrib><creatorcontrib>Cairns, Elton J</creatorcontrib><creatorcontrib>Guo, Jinghua</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liang</au><au>Sun, Dan</au><au>Kang, Jun</au><au>Wang, Hsiao-Tsu</au><au>Hsieh, Shang-Hsien</au><au>Pong, Way-Faung</au><au>Bechtel, Hans A</au><au>Feng, Jun</au><au>Wang, Lin-Wang</au><au>Cairns, Elton J</au><au>Guo, Jinghua</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X‑ray Absorption Spectroscopy</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2018-07-11</date><risdate>2018</risdate><volume>18</volume><issue>7</issue><spage>4506</spage><epage>4515</epage><pages>4506-4515</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>As the lightest and cheapest transition metal dichalcogenide, TiS2 possesses great potential as an electrode material for lithium batteries due to the advantages of high energy density storage capability, fast ion diffusion rate, and low volume expansion. Despite the extensive investigation of its electrochemical properties, the fundamental discharge–charge reaction mechanism of the TiS2 electrode is still elusive. Here, by a combination of ex situ and operando X-ray absorption spectroscopy with density functional theory calculations, we have clearly elucidated the evolution of the structural and chemical properties of TiS2 during the discharge–charge processes. The lithium intercalation reaction is highly reversible and both Ti and sulfur are involved in the redox reaction during the discharge and charge processes. In contrast, the conversion reaction of TiS2 is partially reversible in the first cycle. However, TiO related compounds are developed during electrochemical cycling over extended cycles, which results in the decrease of the conversion reaction reversibility and the rapid capacity fading. In addition, the solid electrolyte interphase formed on the electrode surface is found to be highly dynamic in the initial cycles and then gradually becomes more stable upon further cycling. Such understanding is important for the future design and optimization of TiS2 based electrodes for lithium batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.nanolett.8b01680</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3446-3172</orcidid><orcidid>https://orcid.org/0000-0002-1179-7591</orcidid><orcidid>https://orcid.org/0000-0002-8576-2172</orcidid><orcidid>https://orcid.org/0000000211797591</orcidid><orcidid>https://orcid.org/0000000285762172</orcidid><orcidid>https://orcid.org/0000000234463172</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2018-07, Vol.18 (7), p.4506-4515
issn 1530-6984
1530-6992
language eng
recordid cdi_osti_scitechconnect_1530367
source American Chemical Society
subjects electronic structure
ENERGY STORAGE
in situ and operando
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Lithium ion batteries
MATERIALS SCIENCE
TiS2
X-ray absorption spectroscopy
title Tracking the Chemical and Structural Evolution of the TiS2 Electrode in the Lithium-Ion Cell Using Operando X‑ray Absorption Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tracking%20the%20Chemical%20and%20Structural%20Evolution%20of%20the%20TiS2%20Electrode%20in%20the%20Lithium-Ion%20Cell%20Using%20Operando%20X%E2%80%91ray%20Absorption%20Spectroscopy&rft.jtitle=Nano%20letters&rft.au=Zhang,%20Liang&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-07-11&rft.volume=18&rft.issue=7&rft.spage=4506&rft.epage=4515&rft.pages=4506-4515&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/acs.nanolett.8b01680&rft_dat=%3Cproquest_osti_%3E2049559077%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049559077&rft_id=info:pmid/&rfr_iscdi=true