MAGI: A Method for Metabolite Annotation and Gene Integration

Metabolomics is a widely used technology for obtaining direct measures of metabolic activities from diverse biological systems. However, ambiguous metabolite identifications are a common challenge and biochemical interpretation is often limited by incomplete and inaccurate genome-based predictions o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS chemical biology 2019-04, Vol.14 (4), p.704-714
Hauptverfasser: Erbilgin, Onur, Rübel, Oliver, Louie, Katherine B, Trinh, Matthew, Raad, Markus de, Wildish, Tony, Udwary, Daniel, Hoover, Cindi, Deutsch, Samuel, Northen, Trent R, Bowen, Benjamin P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 714
container_issue 4
container_start_page 704
container_title ACS chemical biology
container_volume 14
creator Erbilgin, Onur
Rübel, Oliver
Louie, Katherine B
Trinh, Matthew
Raad, Markus de
Wildish, Tony
Udwary, Daniel
Hoover, Cindi
Deutsch, Samuel
Northen, Trent R
Bowen, Benjamin P
description Metabolomics is a widely used technology for obtaining direct measures of metabolic activities from diverse biological systems. However, ambiguous metabolite identifications are a common challenge and biochemical interpretation is often limited by incomplete and inaccurate genome-based predictions of enzyme activities (that is, gene annotations). Metabolite Annotation and Gene Integration (MAGI) generates a metabolite–gene association score using a biochemical reaction network. This is calculated by a method that emphasizes consensus between metabolites and genes via biochemical reactions. To demonstrate the potential of this method, we applied MAGI to integrate sequence data and metabolomics data collected from Streptomyces coelicolor A3(2), an extensively characterized bacterium that produces diverse secondary metabolites. Our findings suggest that coupling metabolomics and genomics data by scoring consensus between the two increases the quality of both metabolite identifications and gene annotations in this organism. MAGI also made biochemical predictions for poorly annotated genes that were consistent with the extensive literature on this important organism. This limited analysis suggests that using metabolomics data has the potential to improve annotations in sequenced organisms and also provides testable hypotheses for specific biochemical functions. MAGI is freely available for academic use both as an online tool at https://magi.nersc.gov and with source code available at https://github.com/biorack/magi.
doi_str_mv 10.1021/acschembio.8b01107
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1529923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2196519558</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-3d3f4aae8f2e82e37d7fd618e7c9234d3b361dc1266167eb11237942458d018a3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujEUT_gAez8eQF7LT70Zp4IESRBOJFz023nZUl0OK2e_DfuwjizdNMJs_7ZvIQcg10BJTBvTbBLHFT1n4kSgpAixPShyxLh0Ly4vS4M9kjFyGsKE15LuQ56XEqZC6h6JPHxXg6e0jGyQLj0tuk8s1u1aVf1xGTsXM-6lh7l2hnkyk6TGYu4kfzc7wkZ5VeB7w6zAF5f356m7wM56_T2WQ8H-oUeBxyy6tUaxQVQ8GQF7aobA4CCyMZTy0veQ7WAMtzyAssARgvZMrSTFgKQvMBud33-hBrFUz3mlka7xyaqCBjsqvpoLs9tG38Z4shqk0dDK7X2qFvg2Ig8wxklokOZXvUND6EBiu1beqNbr4UULVzq_7cqoPbLnRz6G_LDdpj5FdmB4z2QBdWK982rnPyX-M3-TGEZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2196519558</pqid></control><display><type>article</type><title>MAGI: A Method for Metabolite Annotation and Gene Integration</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Erbilgin, Onur ; Rübel, Oliver ; Louie, Katherine B ; Trinh, Matthew ; Raad, Markus de ; Wildish, Tony ; Udwary, Daniel ; Hoover, Cindi ; Deutsch, Samuel ; Northen, Trent R ; Bowen, Benjamin P</creator><creatorcontrib>Erbilgin, Onur ; Rübel, Oliver ; Louie, Katherine B ; Trinh, Matthew ; Raad, Markus de ; Wildish, Tony ; Udwary, Daniel ; Hoover, Cindi ; Deutsch, Samuel ; Northen, Trent R ; Bowen, Benjamin P ; Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Metabolomics is a widely used technology for obtaining direct measures of metabolic activities from diverse biological systems. However, ambiguous metabolite identifications are a common challenge and biochemical interpretation is often limited by incomplete and inaccurate genome-based predictions of enzyme activities (that is, gene annotations). Metabolite Annotation and Gene Integration (MAGI) generates a metabolite–gene association score using a biochemical reaction network. This is calculated by a method that emphasizes consensus between metabolites and genes via biochemical reactions. To demonstrate the potential of this method, we applied MAGI to integrate sequence data and metabolomics data collected from Streptomyces coelicolor A3(2), an extensively characterized bacterium that produces diverse secondary metabolites. Our findings suggest that coupling metabolomics and genomics data by scoring consensus between the two increases the quality of both metabolite identifications and gene annotations in this organism. MAGI also made biochemical predictions for poorly annotated genes that were consistent with the extensive literature on this important organism. This limited analysis suggests that using metabolomics data has the potential to improve annotations in sequenced organisms and also provides testable hypotheses for specific biochemical functions. MAGI is freely available for academic use both as an online tool at https://magi.nersc.gov and with source code available at https://github.com/biorack/magi.</description><identifier>ISSN: 1554-8929</identifier><identifier>EISSN: 1554-8937</identifier><identifier>DOI: 10.1021/acschembio.8b01107</identifier><identifier>PMID: 30896917</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Databases, Genetic ; Genome, Bacterial ; Genomics ; Metabolomics ; Molecular Sequence Annotation ; Streptomyces coelicolor - genetics ; Streptomyces coelicolor - metabolism</subject><ispartof>ACS chemical biology, 2019-04, Vol.14 (4), p.704-714</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-3d3f4aae8f2e82e37d7fd618e7c9234d3b361dc1266167eb11237942458d018a3</citedby><cites>FETCH-LOGICAL-a413t-3d3f4aae8f2e82e37d7fd618e7c9234d3b361dc1266167eb11237942458d018a3</cites><orcidid>0000-0003-1368-3958 ; 0000-0001-8263-9198 ; 0000-0001-8404-3259 ; 0000000313683958 ; 0000000184043259 ; 0000000182639198</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acschembio.8b01107$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acschembio.8b01107$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27059,27907,27908,56721,56771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30896917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1529923$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Erbilgin, Onur</creatorcontrib><creatorcontrib>Rübel, Oliver</creatorcontrib><creatorcontrib>Louie, Katherine B</creatorcontrib><creatorcontrib>Trinh, Matthew</creatorcontrib><creatorcontrib>Raad, Markus de</creatorcontrib><creatorcontrib>Wildish, Tony</creatorcontrib><creatorcontrib>Udwary, Daniel</creatorcontrib><creatorcontrib>Hoover, Cindi</creatorcontrib><creatorcontrib>Deutsch, Samuel</creatorcontrib><creatorcontrib>Northen, Trent R</creatorcontrib><creatorcontrib>Bowen, Benjamin P</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>MAGI: A Method for Metabolite Annotation and Gene Integration</title><title>ACS chemical biology</title><addtitle>ACS Chem. Biol</addtitle><description>Metabolomics is a widely used technology for obtaining direct measures of metabolic activities from diverse biological systems. However, ambiguous metabolite identifications are a common challenge and biochemical interpretation is often limited by incomplete and inaccurate genome-based predictions of enzyme activities (that is, gene annotations). Metabolite Annotation and Gene Integration (MAGI) generates a metabolite–gene association score using a biochemical reaction network. This is calculated by a method that emphasizes consensus between metabolites and genes via biochemical reactions. To demonstrate the potential of this method, we applied MAGI to integrate sequence data and metabolomics data collected from Streptomyces coelicolor A3(2), an extensively characterized bacterium that produces diverse secondary metabolites. Our findings suggest that coupling metabolomics and genomics data by scoring consensus between the two increases the quality of both metabolite identifications and gene annotations in this organism. MAGI also made biochemical predictions for poorly annotated genes that were consistent with the extensive literature on this important organism. This limited analysis suggests that using metabolomics data has the potential to improve annotations in sequenced organisms and also provides testable hypotheses for specific biochemical functions. MAGI is freely available for academic use both as an online tool at https://magi.nersc.gov and with source code available at https://github.com/biorack/magi.</description><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Databases, Genetic</subject><subject>Genome, Bacterial</subject><subject>Genomics</subject><subject>Metabolomics</subject><subject>Molecular Sequence Annotation</subject><subject>Streptomyces coelicolor - genetics</subject><subject>Streptomyces coelicolor - metabolism</subject><issn>1554-8929</issn><issn>1554-8937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PAjEQhhujEUT_gAez8eQF7LT70Zp4IESRBOJFz023nZUl0OK2e_DfuwjizdNMJs_7ZvIQcg10BJTBvTbBLHFT1n4kSgpAixPShyxLh0Ly4vS4M9kjFyGsKE15LuQ56XEqZC6h6JPHxXg6e0jGyQLj0tuk8s1u1aVf1xGTsXM-6lh7l2hnkyk6TGYu4kfzc7wkZ5VeB7w6zAF5f356m7wM56_T2WQ8H-oUeBxyy6tUaxQVQ8GQF7aobA4CCyMZTy0veQ7WAMtzyAssARgvZMrSTFgKQvMBud33-hBrFUz3mlka7xyaqCBjsqvpoLs9tG38Z4shqk0dDK7X2qFvg2Ig8wxklokOZXvUND6EBiu1beqNbr4UULVzq_7cqoPbLnRz6G_LDdpj5FdmB4z2QBdWK982rnPyX-M3-TGEZg</recordid><startdate>20190419</startdate><enddate>20190419</enddate><creator>Erbilgin, Onur</creator><creator>Rübel, Oliver</creator><creator>Louie, Katherine B</creator><creator>Trinh, Matthew</creator><creator>Raad, Markus de</creator><creator>Wildish, Tony</creator><creator>Udwary, Daniel</creator><creator>Hoover, Cindi</creator><creator>Deutsch, Samuel</creator><creator>Northen, Trent R</creator><creator>Bowen, Benjamin P</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1368-3958</orcidid><orcidid>https://orcid.org/0000-0001-8263-9198</orcidid><orcidid>https://orcid.org/0000-0001-8404-3259</orcidid><orcidid>https://orcid.org/0000000313683958</orcidid><orcidid>https://orcid.org/0000000184043259</orcidid><orcidid>https://orcid.org/0000000182639198</orcidid></search><sort><creationdate>20190419</creationdate><title>MAGI: A Method for Metabolite Annotation and Gene Integration</title><author>Erbilgin, Onur ; Rübel, Oliver ; Louie, Katherine B ; Trinh, Matthew ; Raad, Markus de ; Wildish, Tony ; Udwary, Daniel ; Hoover, Cindi ; Deutsch, Samuel ; Northen, Trent R ; Bowen, Benjamin P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-3d3f4aae8f2e82e37d7fd618e7c9234d3b361dc1266167eb11237942458d018a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Databases, Genetic</topic><topic>Genome, Bacterial</topic><topic>Genomics</topic><topic>Metabolomics</topic><topic>Molecular Sequence Annotation</topic><topic>Streptomyces coelicolor - genetics</topic><topic>Streptomyces coelicolor - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erbilgin, Onur</creatorcontrib><creatorcontrib>Rübel, Oliver</creatorcontrib><creatorcontrib>Louie, Katherine B</creatorcontrib><creatorcontrib>Trinh, Matthew</creatorcontrib><creatorcontrib>Raad, Markus de</creatorcontrib><creatorcontrib>Wildish, Tony</creatorcontrib><creatorcontrib>Udwary, Daniel</creatorcontrib><creatorcontrib>Hoover, Cindi</creatorcontrib><creatorcontrib>Deutsch, Samuel</creatorcontrib><creatorcontrib>Northen, Trent R</creatorcontrib><creatorcontrib>Bowen, Benjamin P</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erbilgin, Onur</au><au>Rübel, Oliver</au><au>Louie, Katherine B</au><au>Trinh, Matthew</au><au>Raad, Markus de</au><au>Wildish, Tony</au><au>Udwary, Daniel</au><au>Hoover, Cindi</au><au>Deutsch, Samuel</au><au>Northen, Trent R</au><au>Bowen, Benjamin P</au><aucorp>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MAGI: A Method for Metabolite Annotation and Gene Integration</atitle><jtitle>ACS chemical biology</jtitle><addtitle>ACS Chem. Biol</addtitle><date>2019-04-19</date><risdate>2019</risdate><volume>14</volume><issue>4</issue><spage>704</spage><epage>714</epage><pages>704-714</pages><issn>1554-8929</issn><eissn>1554-8937</eissn><abstract>Metabolomics is a widely used technology for obtaining direct measures of metabolic activities from diverse biological systems. However, ambiguous metabolite identifications are a common challenge and biochemical interpretation is often limited by incomplete and inaccurate genome-based predictions of enzyme activities (that is, gene annotations). Metabolite Annotation and Gene Integration (MAGI) generates a metabolite–gene association score using a biochemical reaction network. This is calculated by a method that emphasizes consensus between metabolites and genes via biochemical reactions. To demonstrate the potential of this method, we applied MAGI to integrate sequence data and metabolomics data collected from Streptomyces coelicolor A3(2), an extensively characterized bacterium that produces diverse secondary metabolites. Our findings suggest that coupling metabolomics and genomics data by scoring consensus between the two increases the quality of both metabolite identifications and gene annotations in this organism. MAGI also made biochemical predictions for poorly annotated genes that were consistent with the extensive literature on this important organism. This limited analysis suggests that using metabolomics data has the potential to improve annotations in sequenced organisms and also provides testable hypotheses for specific biochemical functions. MAGI is freely available for academic use both as an online tool at https://magi.nersc.gov and with source code available at https://github.com/biorack/magi.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>30896917</pmid><doi>10.1021/acschembio.8b01107</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1368-3958</orcidid><orcidid>https://orcid.org/0000-0001-8263-9198</orcidid><orcidid>https://orcid.org/0000-0001-8404-3259</orcidid><orcidid>https://orcid.org/0000000313683958</orcidid><orcidid>https://orcid.org/0000000184043259</orcidid><orcidid>https://orcid.org/0000000182639198</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8929
ispartof ACS chemical biology, 2019-04, Vol.14 (4), p.704-714
issn 1554-8929
1554-8937
language eng
recordid cdi_osti_scitechconnect_1529923
source MEDLINE; American Chemical Society Journals
subjects Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Databases, Genetic
Genome, Bacterial
Genomics
Metabolomics
Molecular Sequence Annotation
Streptomyces coelicolor - genetics
Streptomyces coelicolor - metabolism
title MAGI: A Method for Metabolite Annotation and Gene Integration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T08%3A04%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MAGI:%20A%20Method%20for%20Metabolite%20Annotation%20and%20Gene%20Integration&rft.jtitle=ACS%20chemical%20biology&rft.au=Erbilgin,%20Onur&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory-National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2019-04-19&rft.volume=14&rft.issue=4&rft.spage=704&rft.epage=714&rft.pages=704-714&rft.issn=1554-8929&rft.eissn=1554-8937&rft_id=info:doi/10.1021/acschembio.8b01107&rft_dat=%3Cproquest_osti_%3E2196519558%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2196519558&rft_id=info:pmid/30896917&rfr_iscdi=true