Spin dependent resonant electron tunneling through planar graphene barriers

We study spin-dependent electron transport properties of two dimensional graphene double and triple barrier junctions via first-principles calculations. The double barrier junction consists of two graphene leads, a quantum well of zigzag graphene nanoribbon (ZGNR) in the center, and two vacuum barri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2019-04, Vol.144 (C), p.362-369
Hauptverfasser: Liu, Shuanglong, Wang, Yun-Peng, Fry, James N., Cheng, Hai-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 369
container_issue C
container_start_page 362
container_title Carbon (New York)
container_volume 144
creator Liu, Shuanglong
Wang, Yun-Peng
Fry, James N.
Cheng, Hai-Ping
description We study spin-dependent electron transport properties of two dimensional graphene double and triple barrier junctions via first-principles calculations. The double barrier junction consists of two graphene leads, a quantum well of zigzag graphene nanoribbon (ZGNR) in the center, and two vacuum barriers separating the ZGNR from the two leads. Resonant electron tunneling occurs when the energy bands of graphene and ZGNR are well aligned in energy and wavevector. Highly spin-polarized electron transmission arises in such junctions when the two edges of the center ZGNR are in the ferromagnetic configuration. The spin polarization of the electron transmission at the Fermi energy can be tuned by gate voltage. We further investigate the dependence of the electron transmission on the width of the ZGNR, effects on barrier height when replacing vacuum by h-BN, and the consequence of replacing a double barrier by a triple barrier. [Display omitted]
doi_str_mv 10.1016/j.carbon.2018.12.035
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1529914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622318311667</els_id><sourcerecordid>2218958150</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-7aa6ba3cc1cda2a0be424352935d13d1ebae737685eb09a2f48bdee849780ed13</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw9Fz62ZJG3TiyCL_3DBg3oOaTq77bImNckKfntT6tnTzMBvHu89Qi6BFkChutkVRvvW2YJRkAWwgvLyiCxA1jznsoFjsqCUyrxijJ-SsxB26RQSxIK8vI2DzToc0XZoY-YxOKvTgns00TubxYO1uB_sNou9d4dtn417bbXPtl6PPVrMWu39gD6ck5ON3ge8-JtL8vFw_756ytevj8-ru3VuBK1jXmtdtZobA6bTTNMWBRO8ZA0vO-AdYKux5nUlS2xpo9lGyLZDlKKpJcWELMnVrOtCHFQwQ0TTG5dsmqggCTUgEnQ9Q6N3XwcMUe3cwdvkSzEGsikllDRRYqaMdyF43KjRD5_a_yigaupW7dTcrZq6VcBU6ja93c5vmGJ-p-yTC7QGu8FPJjo3_C_wCzlchPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2218958150</pqid></control><display><type>article</type><title>Spin dependent resonant electron tunneling through planar graphene barriers</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Shuanglong ; Wang, Yun-Peng ; Fry, James N. ; Cheng, Hai-Ping</creator><creatorcontrib>Liu, Shuanglong ; Wang, Yun-Peng ; Fry, James N. ; Cheng, Hai-Ping ; Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>We study spin-dependent electron transport properties of two dimensional graphene double and triple barrier junctions via first-principles calculations. The double barrier junction consists of two graphene leads, a quantum well of zigzag graphene nanoribbon (ZGNR) in the center, and two vacuum barriers separating the ZGNR from the two leads. Resonant electron tunneling occurs when the energy bands of graphene and ZGNR are well aligned in energy and wavevector. Highly spin-polarized electron transmission arises in such junctions when the two edges of the center ZGNR are in the ferromagnetic configuration. The spin polarization of the electron transmission at the Fermi energy can be tuned by gate voltage. We further investigate the dependence of the electron transmission on the width of the ZGNR, effects on barrier height when replacing vacuum by h-BN, and the consequence of replacing a double barrier by a triple barrier. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2018.12.035</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Dependence ; Double barrier ; Electron spin ; Electron transport ; Electron tunneling ; Energy bands ; Energy transmission ; Ferromagnetism ; First principles ; Graphene ; Polarization (spin alignment) ; Quantum wells ; Spin-dependent transport ; Studies ; Transmission electron microscopy ; Transport properties</subject><ispartof>Carbon (New York), 2019-04, Vol.144 (C), p.362-369</ispartof><rights>2018</rights><rights>Copyright Elsevier BV Apr 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-7aa6ba3cc1cda2a0be424352935d13d1ebae737685eb09a2f48bdee849780ed13</citedby><cites>FETCH-LOGICAL-c407t-7aa6ba3cc1cda2a0be424352935d13d1ebae737685eb09a2f48bdee849780ed13</cites><orcidid>0000-0003-3253-5491 ; 0000000332535491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.carbon.2018.12.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3538,27906,27907,45977</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1529914$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Shuanglong</creatorcontrib><creatorcontrib>Wang, Yun-Peng</creatorcontrib><creatorcontrib>Fry, James N.</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Spin dependent resonant electron tunneling through planar graphene barriers</title><title>Carbon (New York)</title><description>We study spin-dependent electron transport properties of two dimensional graphene double and triple barrier junctions via first-principles calculations. The double barrier junction consists of two graphene leads, a quantum well of zigzag graphene nanoribbon (ZGNR) in the center, and two vacuum barriers separating the ZGNR from the two leads. Resonant electron tunneling occurs when the energy bands of graphene and ZGNR are well aligned in energy and wavevector. Highly spin-polarized electron transmission arises in such junctions when the two edges of the center ZGNR are in the ferromagnetic configuration. The spin polarization of the electron transmission at the Fermi energy can be tuned by gate voltage. We further investigate the dependence of the electron transmission on the width of the ZGNR, effects on barrier height when replacing vacuum by h-BN, and the consequence of replacing a double barrier by a triple barrier. [Display omitted]</description><subject>Dependence</subject><subject>Double barrier</subject><subject>Electron spin</subject><subject>Electron transport</subject><subject>Electron tunneling</subject><subject>Energy bands</subject><subject>Energy transmission</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Graphene</subject><subject>Polarization (spin alignment)</subject><subject>Quantum wells</subject><subject>Spin-dependent transport</subject><subject>Studies</subject><subject>Transmission electron microscopy</subject><subject>Transport properties</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw9Fz62ZJG3TiyCL_3DBg3oOaTq77bImNckKfntT6tnTzMBvHu89Qi6BFkChutkVRvvW2YJRkAWwgvLyiCxA1jznsoFjsqCUyrxijJ-SsxB26RQSxIK8vI2DzToc0XZoY-YxOKvTgns00TubxYO1uB_sNou9d4dtn417bbXPtl6PPVrMWu39gD6ck5ON3ge8-JtL8vFw_756ytevj8-ru3VuBK1jXmtdtZobA6bTTNMWBRO8ZA0vO-AdYKux5nUlS2xpo9lGyLZDlKKpJcWELMnVrOtCHFQwQ0TTG5dsmqggCTUgEnQ9Q6N3XwcMUe3cwdvkSzEGsikllDRRYqaMdyF43KjRD5_a_yigaupW7dTcrZq6VcBU6ja93c5vmGJ-p-yTC7QGu8FPJjo3_C_wCzlchPQ</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Liu, Shuanglong</creator><creator>Wang, Yun-Peng</creator><creator>Fry, James N.</creator><creator>Cheng, Hai-Ping</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3253-5491</orcidid><orcidid>https://orcid.org/0000000332535491</orcidid></search><sort><creationdate>201904</creationdate><title>Spin dependent resonant electron tunneling through planar graphene barriers</title><author>Liu, Shuanglong ; Wang, Yun-Peng ; Fry, James N. ; Cheng, Hai-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-7aa6ba3cc1cda2a0be424352935d13d1ebae737685eb09a2f48bdee849780ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dependence</topic><topic>Double barrier</topic><topic>Electron spin</topic><topic>Electron transport</topic><topic>Electron tunneling</topic><topic>Energy bands</topic><topic>Energy transmission</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Graphene</topic><topic>Polarization (spin alignment)</topic><topic>Quantum wells</topic><topic>Spin-dependent transport</topic><topic>Studies</topic><topic>Transmission electron microscopy</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shuanglong</creatorcontrib><creatorcontrib>Wang, Yun-Peng</creatorcontrib><creatorcontrib>Fry, James N.</creatorcontrib><creatorcontrib>Cheng, Hai-Ping</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shuanglong</au><au>Wang, Yun-Peng</au><au>Fry, James N.</au><au>Cheng, Hai-Ping</au><aucorp>Lawrence Berkeley National Laboratory-National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spin dependent resonant electron tunneling through planar graphene barriers</atitle><jtitle>Carbon (New York)</jtitle><date>2019-04</date><risdate>2019</risdate><volume>144</volume><issue>C</issue><spage>362</spage><epage>369</epage><pages>362-369</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>We study spin-dependent electron transport properties of two dimensional graphene double and triple barrier junctions via first-principles calculations. The double barrier junction consists of two graphene leads, a quantum well of zigzag graphene nanoribbon (ZGNR) in the center, and two vacuum barriers separating the ZGNR from the two leads. Resonant electron tunneling occurs when the energy bands of graphene and ZGNR are well aligned in energy and wavevector. Highly spin-polarized electron transmission arises in such junctions when the two edges of the center ZGNR are in the ferromagnetic configuration. The spin polarization of the electron transmission at the Fermi energy can be tuned by gate voltage. We further investigate the dependence of the electron transmission on the width of the ZGNR, effects on barrier height when replacing vacuum by h-BN, and the consequence of replacing a double barrier by a triple barrier. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2018.12.035</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3253-5491</orcidid><orcidid>https://orcid.org/0000000332535491</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2019-04, Vol.144 (C), p.362-369
issn 0008-6223
1873-3891
language eng
recordid cdi_osti_scitechconnect_1529914
source Elsevier ScienceDirect Journals
subjects Dependence
Double barrier
Electron spin
Electron transport
Electron tunneling
Energy bands
Energy transmission
Ferromagnetism
First principles
Graphene
Polarization (spin alignment)
Quantum wells
Spin-dependent transport
Studies
Transmission electron microscopy
Transport properties
title Spin dependent resonant electron tunneling through planar graphene barriers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T11%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spin%20dependent%20resonant%20electron%20tunneling%20through%20planar%20graphene%20barriers&rft.jtitle=Carbon%20(New%20York)&rft.au=Liu,%20Shuanglong&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory-National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2019-04&rft.volume=144&rft.issue=C&rft.spage=362&rft.epage=369&rft.pages=362-369&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2018.12.035&rft_dat=%3Cproquest_osti_%3E2218958150%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2218958150&rft_id=info:pmid/&rft_els_id=S0008622318311667&rfr_iscdi=true