A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NHi Distribution of Absorbers in the Lyα Forest

We propose a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Lyα forest. The distribution of Doppler parameter and column density (b–N H i distribution) is sensitive to the temperature–density relation T = T 0(ρ/ρ 0) γ-1, and previ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-05, Vol.876 (1)
Hauptverfasser: Hiss, Hector, Walther, Michael, Oñorbe, Jose, Hennawi, Joseph F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Astrophysical journal
container_volume 876
creator Hiss, Hector
Walther, Michael
Oñorbe, Jose
Hennawi, Joseph F.
description We propose a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Lyα forest. The distribution of Doppler parameter and column density (b–N H i distribution) is sensitive to the temperature–density relation T = T 0(ρ/ρ 0) γ-1, and previous work has inferred T 0 and γ by fitting its low-b cutoff. This approach discards the majority of available data and is susceptible to systematics related to cutoff determination. We introduce an approach that exploits all information encoded in the b– N H i distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, and then we use principal component decomposition to create an emulator that can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov Chain Monte Carlo. The method's robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements, we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D (T 0, γ) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at z = 2. Using 200 absorbers, equivalent in path length to a single Lya forest spectrum, we measure $\mathrm{log}{T}_{0}={4.092}_{-0.055}^{+0.050}$ and $\gamma ={1.49}_{-0.074}^{+0.073}$ in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of log T 0 and γ with precision on $\mathrm{log}{T}_{0}$ (γ) nearly two (three) times higher for current data set sizes.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1528862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1528862</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15288623</originalsourceid><addsrcrecordid>eNqNjj1uwkAQhbdIpEDgDqP0SMbGxJQIwo8EFAFqtN6M40XOTrQzjkSXO6AchIvkEJwkKxR6qveK73t6d6rRTZOs00vS5wfVZN5HUdSLB4OG-hnCir6wgrVosSzW6AqWKCW9QUE-VM21t-4dpETY4Mcnei21x_P3cYyOrRzgFavgkgPrLtR8uoQtX508kKuZhXFY9zavLyQVMMyZfI6er9ri8HuCCXlkaan7QleM7f98VE-Tl81o1qHwcMfGCprSkHNoZNdN4yzrx8lN0B8tB1la</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NHi Distribution of Absorbers in the Lyα Forest</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>Alma/SFX Local Collection</source><creator>Hiss, Hector ; Walther, Michael ; Oñorbe, Jose ; Hennawi, Joseph F.</creator><creatorcontrib>Hiss, Hector ; Walther, Michael ; Oñorbe, Jose ; Hennawi, Joseph F. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>We propose a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Lyα forest. The distribution of Doppler parameter and column density (b–N H i distribution) is sensitive to the temperature–density relation T = T 0(ρ/ρ 0) γ-1, and previous work has inferred T 0 and γ by fitting its low-b cutoff. This approach discards the majority of available data and is susceptible to systematics related to cutoff determination. We introduce an approach that exploits all information encoded in the b– N H i distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, and then we use principal component decomposition to create an emulator that can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov Chain Monte Carlo. The method's robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements, we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D (T 0, γ) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at z = 2. Using 200 absorbers, equivalent in path length to a single Lya forest spectrum, we measure $\mathrm{log}{T}_{0}={4.092}_{-0.055}^{+0.050}$ and $\gamma ={1.49}_{-0.074}^{+0.073}$ in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of log T 0 and γ with precision on $\mathrm{log}{T}_{0}$ (γ) nearly two (three) times higher for current data set sizes.</description><identifier>ISSN: 1538-4357</identifier><language>eng</language><publisher>United States: Institute of Physics (IOP)</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; cosmology: observations ; dark ages ; first stars ; intergalactic medium ; quasars: absorption lines ; reionization</subject><ispartof>The Astrophysical journal, 2019-05, Vol.876 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000217483745 ; 0000000287231180 ; 0000000270544332 ; 0000000345449437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1528862$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hiss, Hector</creatorcontrib><creatorcontrib>Walther, Michael</creatorcontrib><creatorcontrib>Oñorbe, Jose</creatorcontrib><creatorcontrib>Hennawi, Joseph F.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NHi Distribution of Absorbers in the Lyα Forest</title><title>The Astrophysical journal</title><description>We propose a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Lyα forest. The distribution of Doppler parameter and column density (b–N H i distribution) is sensitive to the temperature–density relation T = T 0(ρ/ρ 0) γ-1, and previous work has inferred T 0 and γ by fitting its low-b cutoff. This approach discards the majority of available data and is susceptible to systematics related to cutoff determination. We introduce an approach that exploits all information encoded in the b– N H i distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, and then we use principal component decomposition to create an emulator that can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov Chain Monte Carlo. The method's robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements, we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D (T 0, γ) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at z = 2. Using 200 absorbers, equivalent in path length to a single Lya forest spectrum, we measure $\mathrm{log}{T}_{0}={4.092}_{-0.055}^{+0.050}$ and $\gamma ={1.49}_{-0.074}^{+0.073}$ in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of log T 0 and γ with precision on $\mathrm{log}{T}_{0}$ (γ) nearly two (three) times higher for current data set sizes.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>cosmology: observations</subject><subject>dark ages</subject><subject>first stars</subject><subject>intergalactic medium</subject><subject>quasars: absorption lines</subject><subject>reionization</subject><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNjj1uwkAQhbdIpEDgDqP0SMbGxJQIwo8EFAFqtN6M40XOTrQzjkSXO6AchIvkEJwkKxR6qveK73t6d6rRTZOs00vS5wfVZN5HUdSLB4OG-hnCir6wgrVosSzW6AqWKCW9QUE-VM21t-4dpETY4Mcnei21x_P3cYyOrRzgFavgkgPrLtR8uoQtX508kKuZhXFY9zavLyQVMMyZfI6er9ri8HuCCXlkaan7QleM7f98VE-Tl81o1qHwcMfGCprSkHNoZNdN4yzrx8lN0B8tB1la</recordid><startdate>20190506</startdate><enddate>20190506</enddate><creator>Hiss, Hector</creator><creator>Walther, Michael</creator><creator>Oñorbe, Jose</creator><creator>Hennawi, Joseph F.</creator><general>Institute of Physics (IOP)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000217483745</orcidid><orcidid>https://orcid.org/0000000287231180</orcidid><orcidid>https://orcid.org/0000000270544332</orcidid><orcidid>https://orcid.org/0000000345449437</orcidid></search><sort><creationdate>20190506</creationdate><title>A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NHi Distribution of Absorbers in the Lyα Forest</title><author>Hiss, Hector ; Walther, Michael ; Oñorbe, Jose ; Hennawi, Joseph F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15288623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>cosmology: observations</topic><topic>dark ages</topic><topic>first stars</topic><topic>intergalactic medium</topic><topic>quasars: absorption lines</topic><topic>reionization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hiss, Hector</creatorcontrib><creatorcontrib>Walther, Michael</creatorcontrib><creatorcontrib>Oñorbe, Jose</creatorcontrib><creatorcontrib>Hennawi, Joseph F.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hiss, Hector</au><au>Walther, Michael</au><au>Oñorbe, Jose</au><au>Hennawi, Joseph F.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NHi Distribution of Absorbers in the Lyα Forest</atitle><jtitle>The Astrophysical journal</jtitle><date>2019-05-06</date><risdate>2019</risdate><volume>876</volume><issue>1</issue><issn>1538-4357</issn><abstract>We propose a new method for determining the thermal state of the intergalactic medium based on Voigt profile decomposition of the Lyα forest. The distribution of Doppler parameter and column density (b–N H i distribution) is sensitive to the temperature–density relation T = T 0(ρ/ρ 0) γ-1, and previous work has inferred T 0 and γ by fitting its low-b cutoff. This approach discards the majority of available data and is susceptible to systematics related to cutoff determination. We introduce an approach that exploits all information encoded in the b– N H i distribution by modeling its entire shape. We apply kernel density estimation to discrete absorption lines to generate model probability density functions, and then we use principal component decomposition to create an emulator that can be evaluated anywhere in thermal parameter space. We introduce a Bayesian likelihood based on these models enabling parameter inference via Markov Chain Monte Carlo. The method's robustness is tested by applying it to a large grid of thermal history simulations. By conducting 160 mock measurements, we establish that our approach delivers unbiased estimates and valid uncertainties for a 2D (T 0, γ) measurement. Furthermore, we conduct a pilot study applying this methodology to real observational data at z = 2. Using 200 absorbers, equivalent in path length to a single Lya forest spectrum, we measure $\mathrm{log}{T}_{0}={4.092}_{-0.055}^{+0.050}$ and $\gamma ={1.49}_{-0.074}^{+0.073}$ in excellent agreement with cutoff fitting determinations using the same data. Our method is far more sensitive than cutoff fitting, enabling measurements of log T 0 and γ with precision on $\mathrm{log}{T}_{0}$ (γ) nearly two (three) times higher for current data set sizes.</abstract><cop>United States</cop><pub>Institute of Physics (IOP)</pub><orcidid>https://orcid.org/0000000217483745</orcidid><orcidid>https://orcid.org/0000000287231180</orcidid><orcidid>https://orcid.org/0000000270544332</orcidid><orcidid>https://orcid.org/0000000345449437</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1538-4357
ispartof The Astrophysical journal, 2019-05, Vol.876 (1)
issn 1538-4357
language eng
recordid cdi_osti_scitechconnect_1528862
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; Alma/SFX Local Collection
subjects ASTRONOMY AND ASTROPHYSICS
cosmology: observations
dark ages
first stars
intergalactic medium
quasars: absorption lines
reionization
title A Novel Statistical Method for Measuring the Temperature–Density Relation in the IGM Using the b–NHi Distribution of Absorbers in the Lyα Forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T23%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Statistical%20Method%20for%20Measuring%20the%20Temperature%E2%80%93Density%20Relation%20in%20the%20IGM%20Using%20the%20b%E2%80%93NHi%20Distribution%20of%20Absorbers%20in%20the%20Ly%CE%B1%20Forest&rft.jtitle=The%20Astrophysical%20journal&rft.au=Hiss,%20Hector&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States).%20National%20Energy%20Research%20Scientific%20Computing%20Center%20(NERSC)&rft.date=2019-05-06&rft.volume=876&rft.issue=1&rft.issn=1538-4357&rft_id=info:doi/&rft_dat=%3Costi%3E1528862%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true