Length-Dependent Evolution of Type II Heterojunctions in Bottom-Up-Synthesized Graphene Nanoribbons

The ability to tune the band-edge energies of bottom-up graphene nanoribbons (GNRs) via edge dopants creates new opportunities for designing tailor-made GNR heterojunctions and related nanoscale electronic devices. Here we report the local electronic characterization of type II GNR heterojunctions c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2019-05, Vol.19 (5), p.3221-3228
Hauptverfasser: Rizzo, Daniel J, Wu, Meng, Tsai, Hsin-Zon, Marangoni, Tomas, Durr, Rebecca A, Omrani, Arash A, Liou, Franklin, Bronner, Christopher, Joshi, Trinity, Nguyen, Giang D, Rodgers, Griffin F, Choi, Won-Woo, Jørgensen, Jakob H, Fischer, Felix R, Louie, Steven G, Crommie, Michael F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to tune the band-edge energies of bottom-up graphene nanoribbons (GNRs) via edge dopants creates new opportunities for designing tailor-made GNR heterojunctions and related nanoscale electronic devices. Here we report the local electronic characterization of type II GNR heterojunctions composed of two different nitrogen edge-doping configurations (carbazole and phenanthridine) that separately exhibit electron-donating and electron-withdrawing behavior. Atomically resolved structural characterization of phenanthridine/carbazole GNR heterojunctions was performed using bond-resolved scanning tunneling microscopy and noncontact atomic force microscopy. Scanning tunneling spectroscopy and first-principles calculations reveal that carbazole and phenanthridine dopant configurations induce opposite upward and downward orbital energy shifts owing to their different electron affinities. The magnitude of the energy offsets observed in carbazole/phenanthridine heterojunctions is dependent on the length of the GNR segments comprising each heterojunction with longer segments leading to larger heterojunction energy offsets. Using a new on-site energy analysis based on Wannier functions, we find that the origin of this behavior is a charge transfer process that reshapes the electrostatic potential profile over a long distance within the GNR heterojunction.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.9b00758