Nucleon axial, scalar, and tensor charges using lattice QCD at the physical pion mass

We report on lattice QCD calculations of the nucleon isovector axial, scalar, and tensor charges. Our calculations are performed on two 2+1-flavor ensembles generated using a 2-HEX-smeared Wilson-clover action at the physical pion mass and lattice spacings a≈0.116 and 0.093 fm. We use a wide range o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-06, Vol.99 (11), p.1, Article 114505
Hauptverfasser: Hasan, Nesreen, Green, Jeremy, Meinel, Stefan, Engelhardt, Michael, Krieg, Stefan, Negele, John, Pochinsky, Andrew, Syritsyn, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1
container_title Physical review. D
container_volume 99
creator Hasan, Nesreen
Green, Jeremy
Meinel, Stefan
Engelhardt, Michael
Krieg, Stefan
Negele, John
Pochinsky, Andrew
Syritsyn, Sergey
description We report on lattice QCD calculations of the nucleon isovector axial, scalar, and tensor charges. Our calculations are performed on two 2+1-flavor ensembles generated using a 2-HEX-smeared Wilson-clover action at the physical pion mass and lattice spacings a≈0.116 and 0.093 fm. We use a wide range of source-sink separations-eight values ranging from roughly 0.4 to 1.4 fm on the coarse ensemble and three values from 0.9 to 1.5 fm on the fine ensemble-which allows us to perform an extensive study of excited-state effects using different analysis and fit strategies. To determine the renormalization factors, we use the nonperturbative Rome-Southampton approach and compare RI′−MOM and RI-SMOM intermediate schemes to estimate the systematic uncertainties. Our final results are computed in the MS scheme at scale 2 GeV. The tensor and axial charges have uncertainties of roughly 4%, gT=0.972(41) and gA=1.265(49). The resulting scalar charge, gS=0.927(303), has a much larger uncertainty due to a stronger dependence on the choice of intermediate renormalization scheme and on the lattice spacing.
doi_str_mv 10.1103/PhysRevD.99.114505
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1527055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2253255697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-8171614cc1dd22b6a5df16d9789cb5ef1b6d76cae11403a2708014962321430e3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEhX0B1hZsG2Lx46deolaXlLFS3RtuY7TuEqTYDuI_j1GAVZzNTp3HhehCyAzAMKuX6pDeLOfy5mUqZFxwo_QiGY5mRJC5fG_BnKKxiHsSJKCyBxghNZPvalt22D95XQ9wcHoWvsJ1k2Bo21C67GptN_agPvgmi2udYzOWPy6WGIdcaws7tJ-l3y4c2nQXodwjk5KXQc7_q1naH13-754mK6e7x8XN6upYZmI0znkICAzBoqC0o3QvChBFDKfS7PhtoSNKHJhtE1fEaZpTuYEMikoo5AxYtkZuhzmtiE6FYyL1lSmbRprogKeDJwn6GqAOt9-9DZEtWt736S7FKWcUc6FzBNFB8r4NgRvS9V5t9f-oICon5jVX8xKSjXEzL4BgqNvhA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2253255697</pqid></control><display><type>article</type><title>Nucleon axial, scalar, and tensor charges using lattice QCD at the physical pion mass</title><source>American Physical Society Journals</source><creator>Hasan, Nesreen ; Green, Jeremy ; Meinel, Stefan ; Engelhardt, Michael ; Krieg, Stefan ; Negele, John ; Pochinsky, Andrew ; Syritsyn, Sergey</creator><creatorcontrib>Hasan, Nesreen ; Green, Jeremy ; Meinel, Stefan ; Engelhardt, Michael ; Krieg, Stefan ; Negele, John ; Pochinsky, Andrew ; Syritsyn, Sergey</creatorcontrib><description>We report on lattice QCD calculations of the nucleon isovector axial, scalar, and tensor charges. Our calculations are performed on two 2+1-flavor ensembles generated using a 2-HEX-smeared Wilson-clover action at the physical pion mass and lattice spacings a≈0.116 and 0.093 fm. We use a wide range of source-sink separations-eight values ranging from roughly 0.4 to 1.4 fm on the coarse ensemble and three values from 0.9 to 1.5 fm on the fine ensemble-which allows us to perform an extensive study of excited-state effects using different analysis and fit strategies. To determine the renormalization factors, we use the nonperturbative Rome-Southampton approach and compare RI′−MOM and RI-SMOM intermediate schemes to estimate the systematic uncertainties. Our final results are computed in the MS scheme at scale 2 GeV. The tensor and axial charges have uncertainties of roughly 4%, gT=0.972(41) and gA=1.265(49). The resulting scalar charge, gS=0.927(303), has a much larger uncertainty due to a stronger dependence on the choice of intermediate renormalization scheme and on the lattice spacing.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.99.114505</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Dependence ; Mathematical analysis ; Quantum chromodynamics ; Tensors ; Uncertainty</subject><ispartof>Physical review. D, 2019-06, Vol.99 (11), p.1, Article 114505</ispartof><rights>Copyright American Physical Society Jun 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-8171614cc1dd22b6a5df16d9789cb5ef1b6d76cae11403a2708014962321430e3</citedby><cites>FETCH-LOGICAL-c346t-8171614cc1dd22b6a5df16d9789cb5ef1b6d76cae11403a2708014962321430e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1527055$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hasan, Nesreen</creatorcontrib><creatorcontrib>Green, Jeremy</creatorcontrib><creatorcontrib>Meinel, Stefan</creatorcontrib><creatorcontrib>Engelhardt, Michael</creatorcontrib><creatorcontrib>Krieg, Stefan</creatorcontrib><creatorcontrib>Negele, John</creatorcontrib><creatorcontrib>Pochinsky, Andrew</creatorcontrib><creatorcontrib>Syritsyn, Sergey</creatorcontrib><title>Nucleon axial, scalar, and tensor charges using lattice QCD at the physical pion mass</title><title>Physical review. D</title><description>We report on lattice QCD calculations of the nucleon isovector axial, scalar, and tensor charges. Our calculations are performed on two 2+1-flavor ensembles generated using a 2-HEX-smeared Wilson-clover action at the physical pion mass and lattice spacings a≈0.116 and 0.093 fm. We use a wide range of source-sink separations-eight values ranging from roughly 0.4 to 1.4 fm on the coarse ensemble and three values from 0.9 to 1.5 fm on the fine ensemble-which allows us to perform an extensive study of excited-state effects using different analysis and fit strategies. To determine the renormalization factors, we use the nonperturbative Rome-Southampton approach and compare RI′−MOM and RI-SMOM intermediate schemes to estimate the systematic uncertainties. Our final results are computed in the MS scheme at scale 2 GeV. The tensor and axial charges have uncertainties of roughly 4%, gT=0.972(41) and gA=1.265(49). The resulting scalar charge, gS=0.927(303), has a much larger uncertainty due to a stronger dependence on the choice of intermediate renormalization scheme and on the lattice spacing.</description><subject>Dependence</subject><subject>Mathematical analysis</subject><subject>Quantum chromodynamics</subject><subject>Tensors</subject><subject>Uncertainty</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEhX0B1hZsG2Lx46deolaXlLFS3RtuY7TuEqTYDuI_j1GAVZzNTp3HhehCyAzAMKuX6pDeLOfy5mUqZFxwo_QiGY5mRJC5fG_BnKKxiHsSJKCyBxghNZPvalt22D95XQ9wcHoWvsJ1k2Bo21C67GptN_agPvgmi2udYzOWPy6WGIdcaws7tJ-l3y4c2nQXodwjk5KXQc7_q1naH13-754mK6e7x8XN6upYZmI0znkICAzBoqC0o3QvChBFDKfS7PhtoSNKHJhtE1fEaZpTuYEMikoo5AxYtkZuhzmtiE6FYyL1lSmbRprogKeDJwn6GqAOt9-9DZEtWt736S7FKWcUc6FzBNFB8r4NgRvS9V5t9f-oICon5jVX8xKSjXEzL4BgqNvhA</recordid><startdate>20190619</startdate><enddate>20190619</enddate><creator>Hasan, Nesreen</creator><creator>Green, Jeremy</creator><creator>Meinel, Stefan</creator><creator>Engelhardt, Michael</creator><creator>Krieg, Stefan</creator><creator>Negele, John</creator><creator>Pochinsky, Andrew</creator><creator>Syritsyn, Sergey</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20190619</creationdate><title>Nucleon axial, scalar, and tensor charges using lattice QCD at the physical pion mass</title><author>Hasan, Nesreen ; Green, Jeremy ; Meinel, Stefan ; Engelhardt, Michael ; Krieg, Stefan ; Negele, John ; Pochinsky, Andrew ; Syritsyn, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-8171614cc1dd22b6a5df16d9789cb5ef1b6d76cae11403a2708014962321430e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Dependence</topic><topic>Mathematical analysis</topic><topic>Quantum chromodynamics</topic><topic>Tensors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hasan, Nesreen</creatorcontrib><creatorcontrib>Green, Jeremy</creatorcontrib><creatorcontrib>Meinel, Stefan</creatorcontrib><creatorcontrib>Engelhardt, Michael</creatorcontrib><creatorcontrib>Krieg, Stefan</creatorcontrib><creatorcontrib>Negele, John</creatorcontrib><creatorcontrib>Pochinsky, Andrew</creatorcontrib><creatorcontrib>Syritsyn, Sergey</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hasan, Nesreen</au><au>Green, Jeremy</au><au>Meinel, Stefan</au><au>Engelhardt, Michael</au><au>Krieg, Stefan</au><au>Negele, John</au><au>Pochinsky, Andrew</au><au>Syritsyn, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleon axial, scalar, and tensor charges using lattice QCD at the physical pion mass</atitle><jtitle>Physical review. D</jtitle><date>2019-06-19</date><risdate>2019</risdate><volume>99</volume><issue>11</issue><spage>1</spage><pages>1-</pages><artnum>114505</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We report on lattice QCD calculations of the nucleon isovector axial, scalar, and tensor charges. Our calculations are performed on two 2+1-flavor ensembles generated using a 2-HEX-smeared Wilson-clover action at the physical pion mass and lattice spacings a≈0.116 and 0.093 fm. We use a wide range of source-sink separations-eight values ranging from roughly 0.4 to 1.4 fm on the coarse ensemble and three values from 0.9 to 1.5 fm on the fine ensemble-which allows us to perform an extensive study of excited-state effects using different analysis and fit strategies. To determine the renormalization factors, we use the nonperturbative Rome-Southampton approach and compare RI′−MOM and RI-SMOM intermediate schemes to estimate the systematic uncertainties. Our final results are computed in the MS scheme at scale 2 GeV. The tensor and axial charges have uncertainties of roughly 4%, gT=0.972(41) and gA=1.265(49). The resulting scalar charge, gS=0.927(303), has a much larger uncertainty due to a stronger dependence on the choice of intermediate renormalization scheme and on the lattice spacing.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.99.114505</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2019-06, Vol.99 (11), p.1, Article 114505
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1527055
source American Physical Society Journals
subjects Dependence
Mathematical analysis
Quantum chromodynamics
Tensors
Uncertainty
title Nucleon axial, scalar, and tensor charges using lattice QCD at the physical pion mass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A55%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleon%20axial,%20scalar,%20and%20tensor%20charges%20using%20lattice%20QCD%20at%20the%20physical%20pion%20mass&rft.jtitle=Physical%20review.%20D&rft.au=Hasan,%20Nesreen&rft.date=2019-06-19&rft.volume=99&rft.issue=11&rft.spage=1&rft.pages=1-&rft.artnum=114505&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.99.114505&rft_dat=%3Cproquest_osti_%3E2253255697%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2253255697&rft_id=info:pmid/&rfr_iscdi=true