Analysis of the pebble burnup profile in a pebble-bed nuclear reactor

•Flow in a pebble-bed reactor is simulated using the discrete-element method.•Fuel burnup profiles are made by considering each pebble individually.•Burnup profiles in the core and at the exit pipe are analyzed in detail.•The complete pebble recycling and discharging procedure is modeled.•Flow and b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and design 2019-04, Vol.345 (C), p.233-251
Hauptverfasser: Tang, Yushi, Zhang, Liguo, Guo, Qiuju, Xia, Bing, Yin, Zaizhe, Cao, Jianzhu, Tong, Jiejuan, Rycroft, Chris H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue C
container_start_page 233
container_title Nuclear engineering and design
container_volume 345
creator Tang, Yushi
Zhang, Liguo
Guo, Qiuju
Xia, Bing
Yin, Zaizhe
Cao, Jianzhu
Tong, Jiejuan
Rycroft, Chris H.
description •Flow in a pebble-bed reactor is simulated using the discrete-element method.•Fuel burnup profiles are made by considering each pebble individually.•Burnup profiles in the core and at the exit pipe are analyzed in detail.•The complete pebble recycling and discharging procedure is modeled.•Flow and burnup profiles depend on a complex interplay of pebble and wall friction. In a pebble bed nuclear reactor, each fuel pebble draining through the core experiences a different amount of burnup depending on the precise trajectory that it follows. Understanding the burnup profile of pebbles is essential for reactor safety, as well as for fuel economy. Here, we introduce a method for constructing the burnup profile based on performing a discrete element simulation of the pebble drainage, followed by a burnup calculation in each individual pebble. This method is more accurate than previous approaches, and in particular it captures the extremal cases of pebble burnup. We demonstrate the method using the geometry, neutron flux data, and thermal characteristics from the HTR-10 reactor being developed at Tsinghua University. We examine pebble burnup during a single drainage cycle, and over multiple drainage cycles characteristic of normal reactor operation. Our results show that the presence of slow-moving boundary layers of pebbles near the reactor wall strongly influences the burnup profile. We perform a systematic study where the pebble–pebble and pebble–wall friction coefficients are independently varied, and we show that the strength of the boundary layers is a complex interplay of these two parameters.
doi_str_mv 10.1016/j.nucengdes.2019.01.030
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1526595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029549318310525</els_id><sourcerecordid>2207945460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-4be292ef541c16a9bab7a73f561d29244dd541eccdb090f8b1af1f3107f7eaea3</originalsourceid><addsrcrecordid>eNqFUE1LxDAQDaLguvobDHpuTdK03RyXZf2ABS8K3kKSTtyUmq5JK-y_N6WLV-cyDO_NzHsPoVtKckpo9dDmfjTgPxuIOSNU5ITmpCBnaEFXNcvqUnycowUhTGQlF8UluoqxJVMJtkDbtVfdMbqIe4uHPeADaN0B1mPw4wEfQm9dGp3H6gRlGhqcXnagAg6gzNCHa3RhVRfh5tSX6P1x-7Z5znavTy-b9S4znIoh4xqYYGBLTg2tlNBK16oubFnRJgGcN02CwJhGE0HsSlNlqS0oqW0NClSxRHfz3T4OTkbjBjB703sPZpC0ZFUpykS6n0lJ_PcIcZBtn9wkXZIxUgte8ookVj2zTOhjDGDlIbgvFY6SEjkFK1v5F6ycgpWEyhRs2lzPm5Cc_jgIkxDwBhoXJh1N7_698Qt_AoVu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207945460</pqid></control><display><type>article</type><title>Analysis of the pebble burnup profile in a pebble-bed nuclear reactor</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tang, Yushi ; Zhang, Liguo ; Guo, Qiuju ; Xia, Bing ; Yin, Zaizhe ; Cao, Jianzhu ; Tong, Jiejuan ; Rycroft, Chris H.</creator><creatorcontrib>Tang, Yushi ; Zhang, Liguo ; Guo, Qiuju ; Xia, Bing ; Yin, Zaizhe ; Cao, Jianzhu ; Tong, Jiejuan ; Rycroft, Chris H. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>•Flow in a pebble-bed reactor is simulated using the discrete-element method.•Fuel burnup profiles are made by considering each pebble individually.•Burnup profiles in the core and at the exit pipe are analyzed in detail.•The complete pebble recycling and discharging procedure is modeled.•Flow and burnup profiles depend on a complex interplay of pebble and wall friction. In a pebble bed nuclear reactor, each fuel pebble draining through the core experiences a different amount of burnup depending on the precise trajectory that it follows. Understanding the burnup profile of pebbles is essential for reactor safety, as well as for fuel economy. Here, we introduce a method for constructing the burnup profile based on performing a discrete element simulation of the pebble drainage, followed by a burnup calculation in each individual pebble. This method is more accurate than previous approaches, and in particular it captures the extremal cases of pebble burnup. We demonstrate the method using the geometry, neutron flux data, and thermal characteristics from the HTR-10 reactor being developed at Tsinghua University. We examine pebble burnup during a single drainage cycle, and over multiple drainage cycles characteristic of normal reactor operation. Our results show that the presence of slow-moving boundary layers of pebbles near the reactor wall strongly influences the burnup profile. We perform a systematic study where the pebble–pebble and pebble–wall friction coefficients are independently varied, and we show that the strength of the boundary layers is a complex interplay of these two parameters.</description><identifier>ISSN: 0029-5493</identifier><identifier>EISSN: 1872-759X</identifier><identifier>DOI: 10.1016/j.nucengdes.2019.01.030</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boundary layers ; Burnup assay ; Coefficient of friction ; Discrete element method ; Drainage ; Friction ; Fuel economy ; Granular flow ; Mathematical analysis ; Neutron flux ; Nuclear engineering ; Nuclear fuels ; Nuclear reactors ; Nuclear safety ; Pebble bed reactors ; Pebble burnup ; Reactor safety ; Reactors ; SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS</subject><ispartof>Nuclear engineering and design, 2019-04, Vol.345 (C), p.233-251</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Apr 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-4be292ef541c16a9bab7a73f561d29244dd541eccdb090f8b1af1f3107f7eaea3</citedby><cites>FETCH-LOGICAL-c419t-4be292ef541c16a9bab7a73f561d29244dd541eccdb090f8b1af1f3107f7eaea3</cites><orcidid>0000-0003-4677-6990 ; 0000000346776990</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.nucengdes.2019.01.030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1526595$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Yushi</creatorcontrib><creatorcontrib>Zhang, Liguo</creatorcontrib><creatorcontrib>Guo, Qiuju</creatorcontrib><creatorcontrib>Xia, Bing</creatorcontrib><creatorcontrib>Yin, Zaizhe</creatorcontrib><creatorcontrib>Cao, Jianzhu</creatorcontrib><creatorcontrib>Tong, Jiejuan</creatorcontrib><creatorcontrib>Rycroft, Chris H.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Analysis of the pebble burnup profile in a pebble-bed nuclear reactor</title><title>Nuclear engineering and design</title><description>•Flow in a pebble-bed reactor is simulated using the discrete-element method.•Fuel burnup profiles are made by considering each pebble individually.•Burnup profiles in the core and at the exit pipe are analyzed in detail.•The complete pebble recycling and discharging procedure is modeled.•Flow and burnup profiles depend on a complex interplay of pebble and wall friction. In a pebble bed nuclear reactor, each fuel pebble draining through the core experiences a different amount of burnup depending on the precise trajectory that it follows. Understanding the burnup profile of pebbles is essential for reactor safety, as well as for fuel economy. Here, we introduce a method for constructing the burnup profile based on performing a discrete element simulation of the pebble drainage, followed by a burnup calculation in each individual pebble. This method is more accurate than previous approaches, and in particular it captures the extremal cases of pebble burnup. We demonstrate the method using the geometry, neutron flux data, and thermal characteristics from the HTR-10 reactor being developed at Tsinghua University. We examine pebble burnup during a single drainage cycle, and over multiple drainage cycles characteristic of normal reactor operation. Our results show that the presence of slow-moving boundary layers of pebbles near the reactor wall strongly influences the burnup profile. We perform a systematic study where the pebble–pebble and pebble–wall friction coefficients are independently varied, and we show that the strength of the boundary layers is a complex interplay of these two parameters.</description><subject>Boundary layers</subject><subject>Burnup assay</subject><subject>Coefficient of friction</subject><subject>Discrete element method</subject><subject>Drainage</subject><subject>Friction</subject><subject>Fuel economy</subject><subject>Granular flow</subject><subject>Mathematical analysis</subject><subject>Neutron flux</subject><subject>Nuclear engineering</subject><subject>Nuclear fuels</subject><subject>Nuclear reactors</subject><subject>Nuclear safety</subject><subject>Pebble bed reactors</subject><subject>Pebble burnup</subject><subject>Reactor safety</subject><subject>Reactors</subject><subject>SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS</subject><issn>0029-5493</issn><issn>1872-759X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LxDAQDaLguvobDHpuTdK03RyXZf2ABS8K3kKSTtyUmq5JK-y_N6WLV-cyDO_NzHsPoVtKckpo9dDmfjTgPxuIOSNU5ITmpCBnaEFXNcvqUnycowUhTGQlF8UluoqxJVMJtkDbtVfdMbqIe4uHPeADaN0B1mPw4wEfQm9dGp3H6gRlGhqcXnagAg6gzNCHa3RhVRfh5tSX6P1x-7Z5znavTy-b9S4znIoh4xqYYGBLTg2tlNBK16oubFnRJgGcN02CwJhGE0HsSlNlqS0oqW0NClSxRHfz3T4OTkbjBjB703sPZpC0ZFUpykS6n0lJ_PcIcZBtn9wkXZIxUgte8ookVj2zTOhjDGDlIbgvFY6SEjkFK1v5F6ycgpWEyhRs2lzPm5Cc_jgIkxDwBhoXJh1N7_698Qt_AoVu</recordid><startdate>20190415</startdate><enddate>20190415</enddate><creator>Tang, Yushi</creator><creator>Zhang, Liguo</creator><creator>Guo, Qiuju</creator><creator>Xia, Bing</creator><creator>Yin, Zaizhe</creator><creator>Cao, Jianzhu</creator><creator>Tong, Jiejuan</creator><creator>Rycroft, Chris H.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4677-6990</orcidid><orcidid>https://orcid.org/0000000346776990</orcidid></search><sort><creationdate>20190415</creationdate><title>Analysis of the pebble burnup profile in a pebble-bed nuclear reactor</title><author>Tang, Yushi ; Zhang, Liguo ; Guo, Qiuju ; Xia, Bing ; Yin, Zaizhe ; Cao, Jianzhu ; Tong, Jiejuan ; Rycroft, Chris H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-4be292ef541c16a9bab7a73f561d29244dd541eccdb090f8b1af1f3107f7eaea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary layers</topic><topic>Burnup assay</topic><topic>Coefficient of friction</topic><topic>Discrete element method</topic><topic>Drainage</topic><topic>Friction</topic><topic>Fuel economy</topic><topic>Granular flow</topic><topic>Mathematical analysis</topic><topic>Neutron flux</topic><topic>Nuclear engineering</topic><topic>Nuclear fuels</topic><topic>Nuclear reactors</topic><topic>Nuclear safety</topic><topic>Pebble bed reactors</topic><topic>Pebble burnup</topic><topic>Reactor safety</topic><topic>Reactors</topic><topic>SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yushi</creatorcontrib><creatorcontrib>Zhang, Liguo</creatorcontrib><creatorcontrib>Guo, Qiuju</creatorcontrib><creatorcontrib>Xia, Bing</creatorcontrib><creatorcontrib>Yin, Zaizhe</creatorcontrib><creatorcontrib>Cao, Jianzhu</creatorcontrib><creatorcontrib>Tong, Jiejuan</creatorcontrib><creatorcontrib>Rycroft, Chris H.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nuclear engineering and design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yushi</au><au>Zhang, Liguo</au><au>Guo, Qiuju</au><au>Xia, Bing</au><au>Yin, Zaizhe</au><au>Cao, Jianzhu</au><au>Tong, Jiejuan</au><au>Rycroft, Chris H.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the pebble burnup profile in a pebble-bed nuclear reactor</atitle><jtitle>Nuclear engineering and design</jtitle><date>2019-04-15</date><risdate>2019</risdate><volume>345</volume><issue>C</issue><spage>233</spage><epage>251</epage><pages>233-251</pages><issn>0029-5493</issn><eissn>1872-759X</eissn><abstract>•Flow in a pebble-bed reactor is simulated using the discrete-element method.•Fuel burnup profiles are made by considering each pebble individually.•Burnup profiles in the core and at the exit pipe are analyzed in detail.•The complete pebble recycling and discharging procedure is modeled.•Flow and burnup profiles depend on a complex interplay of pebble and wall friction. In a pebble bed nuclear reactor, each fuel pebble draining through the core experiences a different amount of burnup depending on the precise trajectory that it follows. Understanding the burnup profile of pebbles is essential for reactor safety, as well as for fuel economy. Here, we introduce a method for constructing the burnup profile based on performing a discrete element simulation of the pebble drainage, followed by a burnup calculation in each individual pebble. This method is more accurate than previous approaches, and in particular it captures the extremal cases of pebble burnup. We demonstrate the method using the geometry, neutron flux data, and thermal characteristics from the HTR-10 reactor being developed at Tsinghua University. We examine pebble burnup during a single drainage cycle, and over multiple drainage cycles characteristic of normal reactor operation. Our results show that the presence of slow-moving boundary layers of pebbles near the reactor wall strongly influences the burnup profile. We perform a systematic study where the pebble–pebble and pebble–wall friction coefficients are independently varied, and we show that the strength of the boundary layers is a complex interplay of these two parameters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.nucengdes.2019.01.030</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-4677-6990</orcidid><orcidid>https://orcid.org/0000000346776990</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5493
ispartof Nuclear engineering and design, 2019-04, Vol.345 (C), p.233-251
issn 0029-5493
1872-759X
language eng
recordid cdi_osti_scitechconnect_1526595
source ScienceDirect Journals (5 years ago - present)
subjects Boundary layers
Burnup assay
Coefficient of friction
Discrete element method
Drainage
Friction
Fuel economy
Granular flow
Mathematical analysis
Neutron flux
Nuclear engineering
Nuclear fuels
Nuclear reactors
Nuclear safety
Pebble bed reactors
Pebble burnup
Reactor safety
Reactors
SPECIFIC NUCLEAR REACTORS AND ASSOCIATED PLANTS
title Analysis of the pebble burnup profile in a pebble-bed nuclear reactor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T15%3A42%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20pebble%20burnup%20profile%20in%20a%20pebble-bed%20nuclear%20reactor&rft.jtitle=Nuclear%20engineering%20and%20design&rft.au=Tang,%20Yushi&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-04-15&rft.volume=345&rft.issue=C&rft.spage=233&rft.epage=251&rft.pages=233-251&rft.issn=0029-5493&rft.eissn=1872-759X&rft_id=info:doi/10.1016/j.nucengdes.2019.01.030&rft_dat=%3Cproquest_osti_%3E2207945460%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207945460&rft_id=info:pmid/&rft_els_id=S0029549318310525&rfr_iscdi=true