Study of laser produced plasma in a longitudinal magnetic field

Laser produced plasma embedded in a longitudinal magnetic field was studied using a 1 MA pulsed power generator coupled with a 50 TW laser. Half turn coil loads with an internal diameter of 2.5–3.5 mm generate a 50–70 T axial magnetic field near the load. A subpicosecond laser pulse with an intensit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2019-06, Vol.26 (6)
Hauptverfasser: Ivanov, V. V., Maximov, A. V., Betti, R., Leal, L. S., Mancini, R. C., Swanson, K. J., Golovkin, I. E., Fontes, C. J., Sawada, H., Sefkow, A. B., Wong, N. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of plasmas
container_volume 26
creator Ivanov, V. V.
Maximov, A. V.
Betti, R.
Leal, L. S.
Mancini, R. C.
Swanson, K. J.
Golovkin, I. E.
Fontes, C. J.
Sawada, H.
Sefkow, A. B.
Wong, N. L.
description Laser produced plasma embedded in a longitudinal magnetic field was studied using a 1 MA pulsed power generator coupled with a 50 TW laser. Half turn coil loads with an internal diameter of 2.5–3.5 mm generate a 50–70 T axial magnetic field near the load. A subpicosecond laser pulse with an intensity of 1018–1019 W/cm2 irradiates a thin Si foil target in the magnetic field of the coil load. A laser produced plasma plume collimates within the longitudinal field to a narrow jet 0.2–0.3 mm in diameter with a length of 3–4 mm and an electron plasma density of (0.2–1) × 1020 cm−3 on the jet axis. The jet propagates with a velocity of 160–200 km/s in general agreement with magnetohydrodynamic simulations. X-ray spectral measurements show an increase in the plasma electron density resulting from the magnetic confinement of the jet.
doi_str_mv 10.1063/1.5091702
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1525562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2238176584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-c146f43bd54d2195c158a58158b19877489d2bb5a1e459ccb6b77937ebd248ff3</originalsourceid><addsrcrecordid>eNqd0ElLxDAUAOAgCo6jB_9B0JNCxyTN0p5EBjcY8KCCt5BmGSOdpiatMP_eDB3w7iUvDz7eBsA5RguMeHmDFwzVWCByAGYYVXUhuKCHu79ABef04xicpPSFEKKcVTNw-zqMZguDg61KNsI-BjNqa2Cf842CvoMKtqFb--x8p1q4UevODl5D521rTsGRU22yZ_s4B-8P92_Lp2L18vi8vFsVmjI2FBpT7mjZGEYNwTXTmFWKVfltcF0JQavakKZhClvKaq0b3ghRl8I2htDKuXIOLqa6IQ1eJu0Hqz916DqrB4kZYYyTjC4nlLf4Hm0a5FcYYx46SULKCou8Ms3qalI6hpSidbKPfqPiVmIkd0eUWO6PmO31ZHcd1eBD9z_8E-IflL1x5S9IbX3x</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2238176584</pqid></control><display><type>article</type><title>Study of laser produced plasma in a longitudinal magnetic field</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ivanov, V. V. ; Maximov, A. V. ; Betti, R. ; Leal, L. S. ; Mancini, R. C. ; Swanson, K. J. ; Golovkin, I. E. ; Fontes, C. J. ; Sawada, H. ; Sefkow, A. B. ; Wong, N. L.</creator><creatorcontrib>Ivanov, V. V. ; Maximov, A. V. ; Betti, R. ; Leal, L. S. ; Mancini, R. C. ; Swanson, K. J. ; Golovkin, I. E. ; Fontes, C. J. ; Sawada, H. ; Sefkow, A. B. ; Wong, N. L.</creatorcontrib><description>Laser produced plasma embedded in a longitudinal magnetic field was studied using a 1 MA pulsed power generator coupled with a 50 TW laser. Half turn coil loads with an internal diameter of 2.5–3.5 mm generate a 50–70 T axial magnetic field near the load. A subpicosecond laser pulse with an intensity of 1018–1019 W/cm2 irradiates a thin Si foil target in the magnetic field of the coil load. A laser produced plasma plume collimates within the longitudinal field to a narrow jet 0.2–0.3 mm in diameter with a length of 3–4 mm and an electron plasma density of (0.2–1) × 1020 cm−3 on the jet axis. The jet propagates with a velocity of 160–200 km/s in general agreement with magnetohydrodynamic simulations. X-ray spectral measurements show an increase in the plasma electron density resulting from the magnetic confinement of the jet.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5091702</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coils ; Collimation ; Electron density ; Electron plasma ; Fluid dynamics ; Fluid flow ; Foils ; Lasers ; Magnetic fields ; Magnetism ; Magnetohydrodynamic simulation ; Plasma ; Plasma density ; Plasma physics ; X ray spectra</subject><ispartof>Physics of plasmas, 2019-06, Vol.26 (6)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-c146f43bd54d2195c158a58158b19877489d2bb5a1e459ccb6b77937ebd248ff3</citedby><cites>FETCH-LOGICAL-c455t-c146f43bd54d2195c158a58158b19877489d2bb5a1e459ccb6b77937ebd248ff3</cites><orcidid>0000-0003-1087-2964 ; 0000-0002-7972-9894 ; 0000-0002-9731-596X ; 0000000310872964 ; 0000000279729894 ; 000000029731596X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5091702$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4510,27922,27923,76154</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1525562$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ivanov, V. V.</creatorcontrib><creatorcontrib>Maximov, A. V.</creatorcontrib><creatorcontrib>Betti, R.</creatorcontrib><creatorcontrib>Leal, L. S.</creatorcontrib><creatorcontrib>Mancini, R. C.</creatorcontrib><creatorcontrib>Swanson, K. J.</creatorcontrib><creatorcontrib>Golovkin, I. E.</creatorcontrib><creatorcontrib>Fontes, C. J.</creatorcontrib><creatorcontrib>Sawada, H.</creatorcontrib><creatorcontrib>Sefkow, A. B.</creatorcontrib><creatorcontrib>Wong, N. L.</creatorcontrib><title>Study of laser produced plasma in a longitudinal magnetic field</title><title>Physics of plasmas</title><description>Laser produced plasma embedded in a longitudinal magnetic field was studied using a 1 MA pulsed power generator coupled with a 50 TW laser. Half turn coil loads with an internal diameter of 2.5–3.5 mm generate a 50–70 T axial magnetic field near the load. A subpicosecond laser pulse with an intensity of 1018–1019 W/cm2 irradiates a thin Si foil target in the magnetic field of the coil load. A laser produced plasma plume collimates within the longitudinal field to a narrow jet 0.2–0.3 mm in diameter with a length of 3–4 mm and an electron plasma density of (0.2–1) × 1020 cm−3 on the jet axis. The jet propagates with a velocity of 160–200 km/s in general agreement with magnetohydrodynamic simulations. X-ray spectral measurements show an increase in the plasma electron density resulting from the magnetic confinement of the jet.</description><subject>Coils</subject><subject>Collimation</subject><subject>Electron density</subject><subject>Electron plasma</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Foils</subject><subject>Lasers</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Magnetohydrodynamic simulation</subject><subject>Plasma</subject><subject>Plasma density</subject><subject>Plasma physics</subject><subject>X ray spectra</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqd0ElLxDAUAOAgCo6jB_9B0JNCxyTN0p5EBjcY8KCCt5BmGSOdpiatMP_eDB3w7iUvDz7eBsA5RguMeHmDFwzVWCByAGYYVXUhuKCHu79ABef04xicpPSFEKKcVTNw-zqMZguDg61KNsI-BjNqa2Cf842CvoMKtqFb--x8p1q4UevODl5D521rTsGRU22yZ_s4B-8P92_Lp2L18vi8vFsVmjI2FBpT7mjZGEYNwTXTmFWKVfltcF0JQavakKZhClvKaq0b3ghRl8I2htDKuXIOLqa6IQ1eJu0Hqz916DqrB4kZYYyTjC4nlLf4Hm0a5FcYYx46SULKCou8Ms3qalI6hpSidbKPfqPiVmIkd0eUWO6PmO31ZHcd1eBD9z_8E-IflL1x5S9IbX3x</recordid><startdate>201906</startdate><enddate>201906</enddate><creator>Ivanov, V. V.</creator><creator>Maximov, A. V.</creator><creator>Betti, R.</creator><creator>Leal, L. S.</creator><creator>Mancini, R. C.</creator><creator>Swanson, K. J.</creator><creator>Golovkin, I. E.</creator><creator>Fontes, C. J.</creator><creator>Sawada, H.</creator><creator>Sefkow, A. B.</creator><creator>Wong, N. L.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1087-2964</orcidid><orcidid>https://orcid.org/0000-0002-7972-9894</orcidid><orcidid>https://orcid.org/0000-0002-9731-596X</orcidid><orcidid>https://orcid.org/0000000310872964</orcidid><orcidid>https://orcid.org/0000000279729894</orcidid><orcidid>https://orcid.org/000000029731596X</orcidid></search><sort><creationdate>201906</creationdate><title>Study of laser produced plasma in a longitudinal magnetic field</title><author>Ivanov, V. V. ; Maximov, A. V. ; Betti, R. ; Leal, L. S. ; Mancini, R. C. ; Swanson, K. J. ; Golovkin, I. E. ; Fontes, C. J. ; Sawada, H. ; Sefkow, A. B. ; Wong, N. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-c146f43bd54d2195c158a58158b19877489d2bb5a1e459ccb6b77937ebd248ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coils</topic><topic>Collimation</topic><topic>Electron density</topic><topic>Electron plasma</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Foils</topic><topic>Lasers</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Magnetohydrodynamic simulation</topic><topic>Plasma</topic><topic>Plasma density</topic><topic>Plasma physics</topic><topic>X ray spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ivanov, V. V.</creatorcontrib><creatorcontrib>Maximov, A. V.</creatorcontrib><creatorcontrib>Betti, R.</creatorcontrib><creatorcontrib>Leal, L. S.</creatorcontrib><creatorcontrib>Mancini, R. C.</creatorcontrib><creatorcontrib>Swanson, K. J.</creatorcontrib><creatorcontrib>Golovkin, I. E.</creatorcontrib><creatorcontrib>Fontes, C. J.</creatorcontrib><creatorcontrib>Sawada, H.</creatorcontrib><creatorcontrib>Sefkow, A. B.</creatorcontrib><creatorcontrib>Wong, N. L.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ivanov, V. V.</au><au>Maximov, A. V.</au><au>Betti, R.</au><au>Leal, L. S.</au><au>Mancini, R. C.</au><au>Swanson, K. J.</au><au>Golovkin, I. E.</au><au>Fontes, C. J.</au><au>Sawada, H.</au><au>Sefkow, A. B.</au><au>Wong, N. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of laser produced plasma in a longitudinal magnetic field</atitle><jtitle>Physics of plasmas</jtitle><date>2019-06</date><risdate>2019</risdate><volume>26</volume><issue>6</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Laser produced plasma embedded in a longitudinal magnetic field was studied using a 1 MA pulsed power generator coupled with a 50 TW laser. Half turn coil loads with an internal diameter of 2.5–3.5 mm generate a 50–70 T axial magnetic field near the load. A subpicosecond laser pulse with an intensity of 1018–1019 W/cm2 irradiates a thin Si foil target in the magnetic field of the coil load. A laser produced plasma plume collimates within the longitudinal field to a narrow jet 0.2–0.3 mm in diameter with a length of 3–4 mm and an electron plasma density of (0.2–1) × 1020 cm−3 on the jet axis. The jet propagates with a velocity of 160–200 km/s in general agreement with magnetohydrodynamic simulations. X-ray spectral measurements show an increase in the plasma electron density resulting from the magnetic confinement of the jet.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5091702</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1087-2964</orcidid><orcidid>https://orcid.org/0000-0002-7972-9894</orcidid><orcidid>https://orcid.org/0000-0002-9731-596X</orcidid><orcidid>https://orcid.org/0000000310872964</orcidid><orcidid>https://orcid.org/0000000279729894</orcidid><orcidid>https://orcid.org/000000029731596X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2019-06, Vol.26 (6)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1525562
source AIP Journals Complete; Alma/SFX Local Collection
subjects Coils
Collimation
Electron density
Electron plasma
Fluid dynamics
Fluid flow
Foils
Lasers
Magnetic fields
Magnetism
Magnetohydrodynamic simulation
Plasma
Plasma density
Plasma physics
X ray spectra
title Study of laser produced plasma in a longitudinal magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T23%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20laser%20produced%20plasma%20in%20a%20longitudinal%20magnetic%20field&rft.jtitle=Physics%20of%20plasmas&rft.au=Ivanov,%20V.%20V.&rft.date=2019-06&rft.volume=26&rft.issue=6&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5091702&rft_dat=%3Cproquest_osti_%3E2238176584%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2238176584&rft_id=info:pmid/&rfr_iscdi=true