Crystal growth and magnetic structure of MnBi2Te4

Millimeter-sized MnBi2Te4 single crystals are grown out of a Bi-Te flux and characterized using magnetic, transport, scanning tunneling microscopy, and spectroscopy measurements. The magnetic structure of MnBi2Te4 below TN is determined by powder and single-crystal neutron diffraction measurements....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review materials 2019-06, Vol.3 (6)
Hauptverfasser: Yan, Jiaqiang, Zhang, Qiang, Heitmann, Thomas, Huang, Zengle, Chen, K. Y., Cheng, J. -G., Wu, Weida, Vaknin, David, Sales, Brian C., McQueeney, Robert John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physical review materials
container_volume 3
creator Yan, Jiaqiang
Zhang, Qiang
Heitmann, Thomas
Huang, Zengle
Chen, K. Y.
Cheng, J. -G.
Wu, Weida
Vaknin, David
Sales, Brian C.
McQueeney, Robert John
description Millimeter-sized MnBi2Te4 single crystals are grown out of a Bi-Te flux and characterized using magnetic, transport, scanning tunneling microscopy, and spectroscopy measurements. The magnetic structure of MnBi2Te4 below TN is determined by powder and single-crystal neutron diffraction measurements. Below TN = 24 K, Mn2+ moments order ferromagnetically in the ab plane but antiferromagnetically along the crystallographic c axis. The ordered moment is 4.04(13)μB/Mn at 10 K and aligned along the crystallographic c axis in an A-type antiferromagnetic order. Below TN, the electrical resistivity drops upon cooling or when going across the metamagnetic transition in increasing magnetic fields. A critical scattering effect is observed in the vicinity of TN in the temperature dependence of thermal conductivity, indicating strong spin-lattice coupling in this compound. Yet, no anomaly is observed in the temperature dependence of thermopower around TN. Fine tuning of the magnetism and/or electronic band structure is needed for the proposed topological properties of this compound. The growth protocol reported here might be applied to grow high-quality crystals where the electronic band structure and magnetism can be finely tuned by chemical substitutions.
doi_str_mv 10.1103/PhysRevMaterials.3.064202
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1524865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524865</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-e6bc11812b5a57f2d63d0771e2b19002036781c4419c68916227360b78ffb3313</originalsourceid><addsrcrecordid>eNpNjctKw0AUQAexYKn9h9F94r133ksNvqBFKXVdJpNJE6kJZKZK_15BF67OWZ3D2BVCiQji5rU7pU38XPscp94fUilK0JKAzticpFGFc0qc__MLtkzpHQDQKiTj5gyr6ZSyP_D9NH7ljvuh4R9-P8TcB57ydAz5OEU-tnw93PW0jfKSzdqfV1z-ccHeHu631VOxenl8rm5XRSBhcxF1HRAtUq28Mi01WjRgDEaq0QEQCG0sBinRBW0daiIjNNTGtm0tBIoFu_7tjin3uxT6HEMXxmGIIe9QkbRaiW-A7EkV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Crystal growth and magnetic structure of MnBi2Te4</title><source>American Physical Society Journals</source><creator>Yan, Jiaqiang ; Zhang, Qiang ; Heitmann, Thomas ; Huang, Zengle ; Chen, K. Y. ; Cheng, J. -G. ; Wu, Weida ; Vaknin, David ; Sales, Brian C. ; McQueeney, Robert John</creator><creatorcontrib>Yan, Jiaqiang ; Zhang, Qiang ; Heitmann, Thomas ; Huang, Zengle ; Chen, K. Y. ; Cheng, J. -G. ; Wu, Weida ; Vaknin, David ; Sales, Brian C. ; McQueeney, Robert John ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Millimeter-sized MnBi2Te4 single crystals are grown out of a Bi-Te flux and characterized using magnetic, transport, scanning tunneling microscopy, and spectroscopy measurements. The magnetic structure of MnBi2Te4 below TN is determined by powder and single-crystal neutron diffraction measurements. Below TN = 24 K, Mn2+ moments order ferromagnetically in the ab plane but antiferromagnetically along the crystallographic c axis. The ordered moment is 4.04(13)μB/Mn at 10 K and aligned along the crystallographic c axis in an A-type antiferromagnetic order. Below TN, the electrical resistivity drops upon cooling or when going across the metamagnetic transition in increasing magnetic fields. A critical scattering effect is observed in the vicinity of TN in the temperature dependence of thermal conductivity, indicating strong spin-lattice coupling in this compound. Yet, no anomaly is observed in the temperature dependence of thermopower around TN. Fine tuning of the magnetism and/or electronic band structure is needed for the proposed topological properties of this compound. The growth protocol reported here might be applied to grow high-quality crystals where the electronic band structure and magnetism can be finely tuned by chemical substitutions.</description><identifier>ISSN: 2475-9953</identifier><identifier>EISSN: 2475-9953</identifier><identifier>DOI: 10.1103/PhysRevMaterials.3.064202</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; MATERIALS SCIENCE</subject><ispartof>Physical review materials, 2019-06, Vol.3 (6)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c238t-e6bc11812b5a57f2d63d0771e2b19002036781c4419c68916227360b78ffb3313</citedby><orcidid>0000000303897039 ; 0000000263355912 ; 0000000166254706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1524865$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Heitmann, Thomas</creatorcontrib><creatorcontrib>Huang, Zengle</creatorcontrib><creatorcontrib>Chen, K. Y.</creatorcontrib><creatorcontrib>Cheng, J. -G.</creatorcontrib><creatorcontrib>Wu, Weida</creatorcontrib><creatorcontrib>Vaknin, David</creatorcontrib><creatorcontrib>Sales, Brian C.</creatorcontrib><creatorcontrib>McQueeney, Robert John</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Crystal growth and magnetic structure of MnBi2Te4</title><title>Physical review materials</title><description>Millimeter-sized MnBi2Te4 single crystals are grown out of a Bi-Te flux and characterized using magnetic, transport, scanning tunneling microscopy, and spectroscopy measurements. The magnetic structure of MnBi2Te4 below TN is determined by powder and single-crystal neutron diffraction measurements. Below TN = 24 K, Mn2+ moments order ferromagnetically in the ab plane but antiferromagnetically along the crystallographic c axis. The ordered moment is 4.04(13)μB/Mn at 10 K and aligned along the crystallographic c axis in an A-type antiferromagnetic order. Below TN, the electrical resistivity drops upon cooling or when going across the metamagnetic transition in increasing magnetic fields. A critical scattering effect is observed in the vicinity of TN in the temperature dependence of thermal conductivity, indicating strong spin-lattice coupling in this compound. Yet, no anomaly is observed in the temperature dependence of thermopower around TN. Fine tuning of the magnetism and/or electronic band structure is needed for the proposed topological properties of this compound. The growth protocol reported here might be applied to grow high-quality crystals where the electronic band structure and magnetism can be finely tuned by chemical substitutions.</description><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>MATERIALS SCIENCE</subject><issn>2475-9953</issn><issn>2475-9953</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNjctKw0AUQAexYKn9h9F94r133ksNvqBFKXVdJpNJE6kJZKZK_15BF67OWZ3D2BVCiQji5rU7pU38XPscp94fUilK0JKAzticpFGFc0qc__MLtkzpHQDQKiTj5gyr6ZSyP_D9NH7ljvuh4R9-P8TcB57ydAz5OEU-tnw93PW0jfKSzdqfV1z-ccHeHu631VOxenl8rm5XRSBhcxF1HRAtUq28Mi01WjRgDEaq0QEQCG0sBinRBW0daiIjNNTGtm0tBIoFu_7tjin3uxT6HEMXxmGIIe9QkbRaiW-A7EkV</recordid><startdate>20190607</startdate><enddate>20190607</enddate><creator>Yan, Jiaqiang</creator><creator>Zhang, Qiang</creator><creator>Heitmann, Thomas</creator><creator>Huang, Zengle</creator><creator>Chen, K. Y.</creator><creator>Cheng, J. -G.</creator><creator>Wu, Weida</creator><creator>Vaknin, David</creator><creator>Sales, Brian C.</creator><creator>McQueeney, Robert John</creator><general>American Physical Society (APS)</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000303897039</orcidid><orcidid>https://orcid.org/0000000263355912</orcidid><orcidid>https://orcid.org/0000000166254706</orcidid></search><sort><creationdate>20190607</creationdate><title>Crystal growth and magnetic structure of MnBi2Te4</title><author>Yan, Jiaqiang ; Zhang, Qiang ; Heitmann, Thomas ; Huang, Zengle ; Chen, K. Y. ; Cheng, J. -G. ; Wu, Weida ; Vaknin, David ; Sales, Brian C. ; McQueeney, Robert John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-e6bc11812b5a57f2d63d0771e2b19002036781c4419c68916227360b78ffb3313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jiaqiang</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><creatorcontrib>Heitmann, Thomas</creatorcontrib><creatorcontrib>Huang, Zengle</creatorcontrib><creatorcontrib>Chen, K. Y.</creatorcontrib><creatorcontrib>Cheng, J. -G.</creatorcontrib><creatorcontrib>Wu, Weida</creatorcontrib><creatorcontrib>Vaknin, David</creatorcontrib><creatorcontrib>Sales, Brian C.</creatorcontrib><creatorcontrib>McQueeney, Robert John</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jiaqiang</au><au>Zhang, Qiang</au><au>Heitmann, Thomas</au><au>Huang, Zengle</au><au>Chen, K. Y.</au><au>Cheng, J. -G.</au><au>Wu, Weida</au><au>Vaknin, David</au><au>Sales, Brian C.</au><au>McQueeney, Robert John</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal growth and magnetic structure of MnBi2Te4</atitle><jtitle>Physical review materials</jtitle><date>2019-06-07</date><risdate>2019</risdate><volume>3</volume><issue>6</issue><issn>2475-9953</issn><eissn>2475-9953</eissn><abstract>Millimeter-sized MnBi2Te4 single crystals are grown out of a Bi-Te flux and characterized using magnetic, transport, scanning tunneling microscopy, and spectroscopy measurements. The magnetic structure of MnBi2Te4 below TN is determined by powder and single-crystal neutron diffraction measurements. Below TN = 24 K, Mn2+ moments order ferromagnetically in the ab plane but antiferromagnetically along the crystallographic c axis. The ordered moment is 4.04(13)μB/Mn at 10 K and aligned along the crystallographic c axis in an A-type antiferromagnetic order. Below TN, the electrical resistivity drops upon cooling or when going across the metamagnetic transition in increasing magnetic fields. A critical scattering effect is observed in the vicinity of TN in the temperature dependence of thermal conductivity, indicating strong spin-lattice coupling in this compound. Yet, no anomaly is observed in the temperature dependence of thermopower around TN. Fine tuning of the magnetism and/or electronic band structure is needed for the proposed topological properties of this compound. The growth protocol reported here might be applied to grow high-quality crystals where the electronic band structure and magnetism can be finely tuned by chemical substitutions.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevMaterials.3.064202</doi><orcidid>https://orcid.org/0000000303897039</orcidid><orcidid>https://orcid.org/0000000263355912</orcidid><orcidid>https://orcid.org/0000000166254706</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2475-9953
ispartof Physical review materials, 2019-06, Vol.3 (6)
issn 2475-9953
2475-9953
language eng
recordid cdi_osti_scitechconnect_1524865
source American Physical Society Journals
subjects CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
MATERIALS SCIENCE
title Crystal growth and magnetic structure of MnBi2Te4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T09%3A27%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20growth%20and%20magnetic%20structure%20of%20MnBi2Te4&rft.jtitle=Physical%20review%20materials&rft.au=Yan,%20Jiaqiang&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2019-06-07&rft.volume=3&rft.issue=6&rft.issn=2475-9953&rft.eissn=2475-9953&rft_id=info:doi/10.1103/PhysRevMaterials.3.064202&rft_dat=%3Costi%3E1524865%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true