Network Community Detection on Small Quantum Computers

In recent years, a number of quantum computing devices with small numbers of qubits have become available. A hybrid quantum local search (QLS) approach that combines a classical machine and a small quantum device to solve problems of practical size is presented. The proposed approach is applied to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced quantum technologies (Online) 2019-09, Vol.2 (9), p.n/a
Hauptverfasser: Shaydulin, Ruslan, Ushijima‐Mwesigwa, Hayato, Safro, Ilya, Mniszewski, Susan, Alexeev, Yuri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced quantum technologies (Online)
container_volume 2
creator Shaydulin, Ruslan
Ushijima‐Mwesigwa, Hayato
Safro, Ilya
Mniszewski, Susan
Alexeev, Yuri
description In recent years, a number of quantum computing devices with small numbers of qubits have become available. A hybrid quantum local search (QLS) approach that combines a classical machine and a small quantum device to solve problems of practical size is presented. The proposed approach is applied to the network community detection problem. QLS is hardware‐agnostic and easily extendable to new quantum computing devices as they become available. It is demonstrated to solve the 2‐community detection problem on graphs of sizes of up to 410 vertices using the 16‐qubit IBM quantum computer and D‐Wave 2000Q, and compare their performance with the optimal solutions. The results herein demonstrate that QLS performs similarly in terms of quality of the solution and the number of iterations to convergence on both types of quantum computers and it is capable of achieving results comparable to state‐of‐the‐art solvers in terms of quality of the solution including reaching the optimal solutions. A hybrid quantum local search (QLS) approach is described. QLS combines a classical machine and a small quantum device. The proposed approach is applied to the network community detection problem to solve the underlying optimization models on graphs of sizes up to 410 vertices using the 16‐qubit IBM quantum computer and D‐Wave 2000Q.
doi_str_mv 10.1002/qute.201900029
format Article
fullrecord <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1524109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>QUTE201900029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3169-2641991f39708cdcb916e17b840e58ccbf0e19d97f1e6484ea4aaa92215f57643</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsNRePQfvqTubzcccJVYrFKXYnpfNdoOr-ajZDSX_vRsi6k0YmBn4vZnHI-Qa6BIoZbefvdNLRgGp3_CMzFgMECLl_PzPfEkW1r6PSAQRT6MZSZ61O7XdR5C3dd03xg3BvXZaOdM2ga_XWlZVsO1l4_p6hI7-UWevyEUpK6sX331O9g-rXb4ONy-PT_ndJlQRJBiyhAMilBGmNFMHVSAkGtIi41THmVJFSTXgAdMSdMIzriWXUiJjEJdxmvBoTm6mu611RlhlvLU31TaNdyggZhwoemg5Qaprre10KY6dqWU3CKBiTEeM6YifdLwAJ8HJVHr4hxbb_W71q_0C1GNoBQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Network Community Detection on Small Quantum Computers</title><source>Wiley Journals</source><creator>Shaydulin, Ruslan ; Ushijima‐Mwesigwa, Hayato ; Safro, Ilya ; Mniszewski, Susan ; Alexeev, Yuri</creator><creatorcontrib>Shaydulin, Ruslan ; Ushijima‐Mwesigwa, Hayato ; Safro, Ilya ; Mniszewski, Susan ; Alexeev, Yuri</creatorcontrib><description>In recent years, a number of quantum computing devices with small numbers of qubits have become available. A hybrid quantum local search (QLS) approach that combines a classical machine and a small quantum device to solve problems of practical size is presented. The proposed approach is applied to the network community detection problem. QLS is hardware‐agnostic and easily extendable to new quantum computing devices as they become available. It is demonstrated to solve the 2‐community detection problem on graphs of sizes of up to 410 vertices using the 16‐qubit IBM quantum computer and D‐Wave 2000Q, and compare their performance with the optimal solutions. The results herein demonstrate that QLS performs similarly in terms of quality of the solution and the number of iterations to convergence on both types of quantum computers and it is capable of achieving results comparable to state‐of‐the‐art solvers in terms of quality of the solution including reaching the optimal solutions. A hybrid quantum local search (QLS) approach is described. QLS combines a classical machine and a small quantum device. The proposed approach is applied to the network community detection problem to solve the underlying optimization models on graphs of sizes up to 410 vertices using the 16‐qubit IBM quantum computer and D‐Wave 2000Q.</description><identifier>ISSN: 2511-9044</identifier><identifier>EISSN: 2511-9044</identifier><identifier>DOI: 10.1002/qute.201900029</identifier><language>eng</language><publisher>Wiley Blackwell (John Wiley &amp; Sons)</publisher><subject>graph clustering ; quantum annealing ; quantum approximate optimization algorithm</subject><ispartof>Advanced quantum technologies (Online), 2019-09, Vol.2 (9), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3169-2641991f39708cdcb916e17b840e58ccbf0e19d97f1e6484ea4aaa92215f57643</citedby><cites>FETCH-LOGICAL-c3169-2641991f39708cdcb916e17b840e58ccbf0e19d97f1e6484ea4aaa92215f57643</cites><orcidid>0000-0002-8657-2848 ; 0000000286572848</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqute.201900029$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqute.201900029$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1524109$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shaydulin, Ruslan</creatorcontrib><creatorcontrib>Ushijima‐Mwesigwa, Hayato</creatorcontrib><creatorcontrib>Safro, Ilya</creatorcontrib><creatorcontrib>Mniszewski, Susan</creatorcontrib><creatorcontrib>Alexeev, Yuri</creatorcontrib><title>Network Community Detection on Small Quantum Computers</title><title>Advanced quantum technologies (Online)</title><description>In recent years, a number of quantum computing devices with small numbers of qubits have become available. A hybrid quantum local search (QLS) approach that combines a classical machine and a small quantum device to solve problems of practical size is presented. The proposed approach is applied to the network community detection problem. QLS is hardware‐agnostic and easily extendable to new quantum computing devices as they become available. It is demonstrated to solve the 2‐community detection problem on graphs of sizes of up to 410 vertices using the 16‐qubit IBM quantum computer and D‐Wave 2000Q, and compare their performance with the optimal solutions. The results herein demonstrate that QLS performs similarly in terms of quality of the solution and the number of iterations to convergence on both types of quantum computers and it is capable of achieving results comparable to state‐of‐the‐art solvers in terms of quality of the solution including reaching the optimal solutions. A hybrid quantum local search (QLS) approach is described. QLS combines a classical machine and a small quantum device. The proposed approach is applied to the network community detection problem to solve the underlying optimization models on graphs of sizes up to 410 vertices using the 16‐qubit IBM quantum computer and D‐Wave 2000Q.</description><subject>graph clustering</subject><subject>quantum annealing</subject><subject>quantum approximate optimization algorithm</subject><issn>2511-9044</issn><issn>2511-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsNRePQfvqTubzcccJVYrFKXYnpfNdoOr-ajZDSX_vRsi6k0YmBn4vZnHI-Qa6BIoZbefvdNLRgGp3_CMzFgMECLl_PzPfEkW1r6PSAQRT6MZSZ61O7XdR5C3dd03xg3BvXZaOdM2ga_XWlZVsO1l4_p6hI7-UWevyEUpK6sX331O9g-rXb4ONy-PT_ndJlQRJBiyhAMilBGmNFMHVSAkGtIi41THmVJFSTXgAdMSdMIzriWXUiJjEJdxmvBoTm6mu611RlhlvLU31TaNdyggZhwoemg5Qaprre10KY6dqWU3CKBiTEeM6YifdLwAJ8HJVHr4hxbb_W71q_0C1GNoBQ</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Shaydulin, Ruslan</creator><creator>Ushijima‐Mwesigwa, Hayato</creator><creator>Safro, Ilya</creator><creator>Mniszewski, Susan</creator><creator>Alexeev, Yuri</creator><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8657-2848</orcidid><orcidid>https://orcid.org/0000000286572848</orcidid></search><sort><creationdate>201909</creationdate><title>Network Community Detection on Small Quantum Computers</title><author>Shaydulin, Ruslan ; Ushijima‐Mwesigwa, Hayato ; Safro, Ilya ; Mniszewski, Susan ; Alexeev, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3169-2641991f39708cdcb916e17b840e58ccbf0e19d97f1e6484ea4aaa92215f57643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>graph clustering</topic><topic>quantum annealing</topic><topic>quantum approximate optimization algorithm</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shaydulin, Ruslan</creatorcontrib><creatorcontrib>Ushijima‐Mwesigwa, Hayato</creatorcontrib><creatorcontrib>Safro, Ilya</creatorcontrib><creatorcontrib>Mniszewski, Susan</creatorcontrib><creatorcontrib>Alexeev, Yuri</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Advanced quantum technologies (Online)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shaydulin, Ruslan</au><au>Ushijima‐Mwesigwa, Hayato</au><au>Safro, Ilya</au><au>Mniszewski, Susan</au><au>Alexeev, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Community Detection on Small Quantum Computers</atitle><jtitle>Advanced quantum technologies (Online)</jtitle><date>2019-09</date><risdate>2019</risdate><volume>2</volume><issue>9</issue><epage>n/a</epage><issn>2511-9044</issn><eissn>2511-9044</eissn><abstract>In recent years, a number of quantum computing devices with small numbers of qubits have become available. A hybrid quantum local search (QLS) approach that combines a classical machine and a small quantum device to solve problems of practical size is presented. The proposed approach is applied to the network community detection problem. QLS is hardware‐agnostic and easily extendable to new quantum computing devices as they become available. It is demonstrated to solve the 2‐community detection problem on graphs of sizes of up to 410 vertices using the 16‐qubit IBM quantum computer and D‐Wave 2000Q, and compare their performance with the optimal solutions. The results herein demonstrate that QLS performs similarly in terms of quality of the solution and the number of iterations to convergence on both types of quantum computers and it is capable of achieving results comparable to state‐of‐the‐art solvers in terms of quality of the solution including reaching the optimal solutions. A hybrid quantum local search (QLS) approach is described. QLS combines a classical machine and a small quantum device. The proposed approach is applied to the network community detection problem to solve the underlying optimization models on graphs of sizes up to 410 vertices using the 16‐qubit IBM quantum computer and D‐Wave 2000Q.</abstract><pub>Wiley Blackwell (John Wiley &amp; Sons)</pub><doi>10.1002/qute.201900029</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8657-2848</orcidid><orcidid>https://orcid.org/0000000286572848</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2511-9044
ispartof Advanced quantum technologies (Online), 2019-09, Vol.2 (9), p.n/a
issn 2511-9044
2511-9044
language eng
recordid cdi_osti_scitechconnect_1524109
source Wiley Journals
subjects graph clustering
quantum annealing
quantum approximate optimization algorithm
title Network Community Detection on Small Quantum Computers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A44%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Community%20Detection%20on%20Small%20Quantum%20Computers&rft.jtitle=Advanced%20quantum%20technologies%20(Online)&rft.au=Shaydulin,%20Ruslan&rft.date=2019-09&rft.volume=2&rft.issue=9&rft.epage=n/a&rft.issn=2511-9044&rft.eissn=2511-9044&rft_id=info:doi/10.1002/qute.201900029&rft_dat=%3Cwiley_osti_%3EQUTE201900029%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true