Toward Chirality-Encoded Domain Wall Logic

Nonvolatile logic networks based on spintronic and nanomagnetic technologies have the possibility to create high-speed, ultralow power computational architectures. This work investigates the feasibility of “chirality-encoded domain wall logic,” a nanomagnetic logic architecture where data are encode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2019-01, Vol.29 (10)
Hauptverfasser: Omari, Khalid A., Broomhall, Thomas J., Dawidek, Richard W. S., Allwood, Dan A., Bradley, Ruth C., Wood, Jonathan M., Fry, Paul W., Rosamond, Mark C., Linfield, Edmund H., Im, Mi-Young, Fischer, Peter J., Hayward, Tom J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Advanced functional materials
container_volume 29
creator Omari, Khalid A.
Broomhall, Thomas J.
Dawidek, Richard W. S.
Allwood, Dan A.
Bradley, Ruth C.
Wood, Jonathan M.
Fry, Paul W.
Rosamond, Mark C.
Linfield, Edmund H.
Im, Mi-Young
Fischer, Peter J.
Hayward, Tom J.
description Nonvolatile logic networks based on spintronic and nanomagnetic technologies have the possibility to create high-speed, ultralow power computational architectures. This work investigates the feasibility of “chirality-encoded domain wall logic,” a nanomagnetic logic architecture where data are encoded by the chiral structures of mobile domain walls in networks of ferromagnetic nanowires and processed by the chiral structures' interactions with geometric features of the networks. High-resolution magnetic imaging is used to test two critical functionalities: the inversion of domain wall chirality at tailored artificial defect sites (logical NOT gates) and the chirality-selective output of domain walls from 2-in-1-out nanowire junctions (common operation to AND/NAND/OR/NOR gates). The measurements demonstrate both operations can be performed to a good degree of fidelity even in the presence of complex magnetization dynamics that would normally be expected to destroy chirality-encoded information. Together, these results represent a strong indication of the feasibility of devices where chiral magnetization textures are used to directly carry, rather than merely delineate, data.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1515779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1515779</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_15157793</originalsourceid><addsrcrecordid>eNpjYuA0NDM00zU2MLJggbMNIzgYuIqLswwMDM3NjU04GbRC8ssTi1IUnDMyixJzMksqdV3zkvNTUlMUXPJzEzPzFMITc3IUfPLTM5N5GFjTEnOKU3mhNDeDkptriLOHbn5xSWZ8cXJmSWpyRnJ-Xl5qckm8oamhqbm5pTFRigBovzGz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Toward Chirality-Encoded Domain Wall Logic</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Omari, Khalid A. ; Broomhall, Thomas J. ; Dawidek, Richard W. S. ; Allwood, Dan A. ; Bradley, Ruth C. ; Wood, Jonathan M. ; Fry, Paul W. ; Rosamond, Mark C. ; Linfield, Edmund H. ; Im, Mi-Young ; Fischer, Peter J. ; Hayward, Tom J.</creator><creatorcontrib>Omari, Khalid A. ; Broomhall, Thomas J. ; Dawidek, Richard W. S. ; Allwood, Dan A. ; Bradley, Ruth C. ; Wood, Jonathan M. ; Fry, Paul W. ; Rosamond, Mark C. ; Linfield, Edmund H. ; Im, Mi-Young ; Fischer, Peter J. ; Hayward, Tom J. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Nonvolatile logic networks based on spintronic and nanomagnetic technologies have the possibility to create high-speed, ultralow power computational architectures. This work investigates the feasibility of “chirality-encoded domain wall logic,” a nanomagnetic logic architecture where data are encoded by the chiral structures of mobile domain walls in networks of ferromagnetic nanowires and processed by the chiral structures' interactions with geometric features of the networks. High-resolution magnetic imaging is used to test two critical functionalities: the inversion of domain wall chirality at tailored artificial defect sites (logical NOT gates) and the chirality-selective output of domain walls from 2-in-1-out nanowire junctions (common operation to AND/NAND/OR/NOR gates). The measurements demonstrate both operations can be performed to a good degree of fidelity even in the presence of complex magnetization dynamics that would normally be expected to destroy chirality-encoded information. Together, these results represent a strong indication of the feasibility of devices where chiral magnetization textures are used to directly carry, rather than merely delineate, data.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><language>eng</language><publisher>United States: Wiley</publisher><subject>chirality ; domain walls ; magnetic logic ; MATERIALS SCIENCE ; nanomagnetism ; spintronics</subject><ispartof>Advanced functional materials, 2019-01, Vol.29 (10)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000237323095</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1515779$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Omari, Khalid A.</creatorcontrib><creatorcontrib>Broomhall, Thomas J.</creatorcontrib><creatorcontrib>Dawidek, Richard W. S.</creatorcontrib><creatorcontrib>Allwood, Dan A.</creatorcontrib><creatorcontrib>Bradley, Ruth C.</creatorcontrib><creatorcontrib>Wood, Jonathan M.</creatorcontrib><creatorcontrib>Fry, Paul W.</creatorcontrib><creatorcontrib>Rosamond, Mark C.</creatorcontrib><creatorcontrib>Linfield, Edmund H.</creatorcontrib><creatorcontrib>Im, Mi-Young</creatorcontrib><creatorcontrib>Fischer, Peter J.</creatorcontrib><creatorcontrib>Hayward, Tom J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Toward Chirality-Encoded Domain Wall Logic</title><title>Advanced functional materials</title><description>Nonvolatile logic networks based on spintronic and nanomagnetic technologies have the possibility to create high-speed, ultralow power computational architectures. This work investigates the feasibility of “chirality-encoded domain wall logic,” a nanomagnetic logic architecture where data are encoded by the chiral structures of mobile domain walls in networks of ferromagnetic nanowires and processed by the chiral structures' interactions with geometric features of the networks. High-resolution magnetic imaging is used to test two critical functionalities: the inversion of domain wall chirality at tailored artificial defect sites (logical NOT gates) and the chirality-selective output of domain walls from 2-in-1-out nanowire junctions (common operation to AND/NAND/OR/NOR gates). The measurements demonstrate both operations can be performed to a good degree of fidelity even in the presence of complex magnetization dynamics that would normally be expected to destroy chirality-encoded information. Together, these results represent a strong indication of the feasibility of devices where chiral magnetization textures are used to directly carry, rather than merely delineate, data.</description><subject>chirality</subject><subject>domain walls</subject><subject>magnetic logic</subject><subject>MATERIALS SCIENCE</subject><subject>nanomagnetism</subject><subject>spintronics</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NDM00zU2MLJggbMNIzgYuIqLswwMDM3NjU04GbRC8ssTi1IUnDMyixJzMksqdV3zkvNTUlMUXPJzEzPzFMITc3IUfPLTM5N5GFjTEnOKU3mhNDeDkptriLOHbn5xSWZ8cXJmSWpyRnJ-Xl5qckm8oamhqbm5pTFRigBovzGz</recordid><startdate>20190122</startdate><enddate>20190122</enddate><creator>Omari, Khalid A.</creator><creator>Broomhall, Thomas J.</creator><creator>Dawidek, Richard W. S.</creator><creator>Allwood, Dan A.</creator><creator>Bradley, Ruth C.</creator><creator>Wood, Jonathan M.</creator><creator>Fry, Paul W.</creator><creator>Rosamond, Mark C.</creator><creator>Linfield, Edmund H.</creator><creator>Im, Mi-Young</creator><creator>Fischer, Peter J.</creator><creator>Hayward, Tom J.</creator><general>Wiley</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000237323095</orcidid></search><sort><creationdate>20190122</creationdate><title>Toward Chirality-Encoded Domain Wall Logic</title><author>Omari, Khalid A. ; Broomhall, Thomas J. ; Dawidek, Richard W. S. ; Allwood, Dan A. ; Bradley, Ruth C. ; Wood, Jonathan M. ; Fry, Paul W. ; Rosamond, Mark C. ; Linfield, Edmund H. ; Im, Mi-Young ; Fischer, Peter J. ; Hayward, Tom J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_15157793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>chirality</topic><topic>domain walls</topic><topic>magnetic logic</topic><topic>MATERIALS SCIENCE</topic><topic>nanomagnetism</topic><topic>spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omari, Khalid A.</creatorcontrib><creatorcontrib>Broomhall, Thomas J.</creatorcontrib><creatorcontrib>Dawidek, Richard W. S.</creatorcontrib><creatorcontrib>Allwood, Dan A.</creatorcontrib><creatorcontrib>Bradley, Ruth C.</creatorcontrib><creatorcontrib>Wood, Jonathan M.</creatorcontrib><creatorcontrib>Fry, Paul W.</creatorcontrib><creatorcontrib>Rosamond, Mark C.</creatorcontrib><creatorcontrib>Linfield, Edmund H.</creatorcontrib><creatorcontrib>Im, Mi-Young</creatorcontrib><creatorcontrib>Fischer, Peter J.</creatorcontrib><creatorcontrib>Hayward, Tom J.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omari, Khalid A.</au><au>Broomhall, Thomas J.</au><au>Dawidek, Richard W. S.</au><au>Allwood, Dan A.</au><au>Bradley, Ruth C.</au><au>Wood, Jonathan M.</au><au>Fry, Paul W.</au><au>Rosamond, Mark C.</au><au>Linfield, Edmund H.</au><au>Im, Mi-Young</au><au>Fischer, Peter J.</au><au>Hayward, Tom J.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Chirality-Encoded Domain Wall Logic</atitle><jtitle>Advanced functional materials</jtitle><date>2019-01-22</date><risdate>2019</risdate><volume>29</volume><issue>10</issue><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Nonvolatile logic networks based on spintronic and nanomagnetic technologies have the possibility to create high-speed, ultralow power computational architectures. This work investigates the feasibility of “chirality-encoded domain wall logic,” a nanomagnetic logic architecture where data are encoded by the chiral structures of mobile domain walls in networks of ferromagnetic nanowires and processed by the chiral structures' interactions with geometric features of the networks. High-resolution magnetic imaging is used to test two critical functionalities: the inversion of domain wall chirality at tailored artificial defect sites (logical NOT gates) and the chirality-selective output of domain walls from 2-in-1-out nanowire junctions (common operation to AND/NAND/OR/NOR gates). The measurements demonstrate both operations can be performed to a good degree of fidelity even in the presence of complex magnetization dynamics that would normally be expected to destroy chirality-encoded information. Together, these results represent a strong indication of the feasibility of devices where chiral magnetization textures are used to directly carry, rather than merely delineate, data.</abstract><cop>United States</cop><pub>Wiley</pub><orcidid>https://orcid.org/0000000237323095</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-01, Vol.29 (10)
issn 1616-301X
1616-3028
language eng
recordid cdi_osti_scitechconnect_1515779
source Wiley Online Library Journals Frontfile Complete
subjects chirality
domain walls
magnetic logic
MATERIALS SCIENCE
nanomagnetism
spintronics
title Toward Chirality-Encoded Domain Wall Logic
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T08%3A36%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Chirality-Encoded%20Domain%20Wall%20Logic&rft.jtitle=Advanced%20functional%20materials&rft.au=Omari,%20Khalid%20A.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2019-01-22&rft.volume=29&rft.issue=10&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/&rft_dat=%3Costi%3E1515779%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true