TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana

Summary O‐Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O‐acetylation of pectins are still largely unknown. In this stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2018-11, Vol.96 (4), p.772-785
Hauptverfasser: Stranne, Maria, Ren, Yanfang, Fimognari, Lorenzo, Birdseye, Devon, Yan, Jingwei, Bardor, Muriel, Mollet, Jean‐Claude, Komatsu, Takanori, Kikuchi, Jun, Scheller, Henrik V., Sakuragi, Yumiko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 785
container_issue 4
container_start_page 772
container_title The Plant journal : for cell and molecular biology
container_volume 96
creator Stranne, Maria
Ren, Yanfang
Fimognari, Lorenzo
Birdseye, Devon
Yan, Jingwei
Bardor, Muriel
Mollet, Jean‐Claude
Komatsu, Takanori
Kikuchi, Jun
Scheller, Henrik V.
Sakuragi, Yumiko
description Summary O‐Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O‐acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O‐acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock‐out mutants of Arabidopsis, tbl10‐1 and tbl10‐2, were isolated and shown to exhibit reduced levels of wall‐bound acetyl esters, equivalent of ~50% of the wild‐type level in pectin‐enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan‐I (RG‐I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O‐acetylation of RG‐I, possibly as an acetyltransferase, and suggest that O‐acetylated RG‐I plays a role in abiotic stress responses in Arabidopsis. Significance statement TBL10 is required for O‐acetylation of rhamnogalacturonan‐I.
doi_str_mv 10.1111/tpj.14067
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1515776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089855211</sourcerecordid><originalsourceid>FETCH-LOGICAL-h3757-81a0d8fc40d6d01a992a974c4d0e0f3342bf334fe027cf7cb2c53dc3847b2cb83</originalsourceid><addsrcrecordid>eNpd0cFuFCEYB3BiNHatHnwBQ_Sih2n5gIGZ47ZRW7NJPayJJwnDMC6bWZgCo9mbj-Az-iSy3dqDHOAL_PIB-SP0EsgZlHGep-0ZcCLkI7QAJuqKAfv6GC1IK0glOdAT9CylLSEgmeBP0QkjAE0txAJ9W1-sgGCXcLS3s4u2x0OI-ObPr9_a2LwfdXbB4zDgyZrsDI4bvfPhux61yXMMXvtCr7HzeBl15_owpdIsb_TotNfP0ZNBj8m-uF9P0ZcP79eXV9Xq5uP15XJVbZisZdWAJn0zGE560RPQbUt1K7nhPbFkYIzT7jAPllBpBmk6amrWG9ZwWcquYafo9bFvSNmpZFy2ZmOC9-XRCmqopRQFvTui8jg1RbfTca-CdupquVKHPQKNZJSLH1Ds26OdYridbcpq55Kx46i9DXNSlDRtU9cUDvTNf3Qb5ujLdxUFRimnIGVRr-7V3O1s_3D_vygKOD-Cn260-4dzIOqQsSoZq7uM1frzp7uC_QUFeZhN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132242177</pqid></control><display><type>article</type><title>TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana</title><source>MEDLINE</source><source>Wiley Online Library</source><source>IngentaConnect Open Access</source><source>Elektronische Zeitschriftenbibliothek</source><creator>Stranne, Maria ; Ren, Yanfang ; Fimognari, Lorenzo ; Birdseye, Devon ; Yan, Jingwei ; Bardor, Muriel ; Mollet, Jean‐Claude ; Komatsu, Takanori ; Kikuchi, Jun ; Scheller, Henrik V. ; Sakuragi, Yumiko</creator><creatorcontrib>Stranne, Maria ; Ren, Yanfang ; Fimognari, Lorenzo ; Birdseye, Devon ; Yan, Jingwei ; Bardor, Muriel ; Mollet, Jean‐Claude ; Komatsu, Takanori ; Kikuchi, Jun ; Scheller, Henrik V. ; Sakuragi, Yumiko ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Summary O‐Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O‐acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O‐acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock‐out mutants of Arabidopsis, tbl10‐1 and tbl10‐2, were isolated and shown to exhibit reduced levels of wall‐bound acetyl esters, equivalent of ~50% of the wild‐type level in pectin‐enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan‐I (RG‐I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O‐acetylation of RG‐I, possibly as an acetyltransferase, and suggest that O‐acetylated RG‐I plays a role in abiotic stress responses in Arabidopsis. Significance statement TBL10 is required for O‐acetylation of rhamnogalacturonan‐I.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.14067</identifier><identifier>PMID: 30118566</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acetylation ; Acetyltransferase ; Acetyltransferases - genetics ; Acetyltransferases - metabolism ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; BASIC BIOLOGICAL SCIENCES ; Biochemistry ; Biochemistry, Molecular Biology ; Biotechnology ; Birefringence ; Botrytis - metabolism ; Cell Behavior ; Cell walls ; Cellular Biology ; Chemical Sciences ; Development Biology ; Drought ; Esters ; Fractionation ; Gametogenesis ; Gene Expression Regulation, Plant ; Genomics ; Glucans - metabolism ; Hemicellulose ; Leaves ; Life Sciences ; Mannan ; Mannans - metabolism ; Microorganisms ; Molecular biology ; Molecular Networks ; Mutants ; O‐acetylation ; Pathogens ; Pectin ; Pectins - metabolism ; Phytopathology and phytopharmacy ; Plant breeding ; Plant growth ; Plant Growth Regulators - metabolism ; Plant Leaves - metabolism ; Polymers ; Polysaccharides - metabolism ; Pseudomonas syringae - metabolism ; Rhamnogalacturonan ; rhamnogalacturonan I ; Subcellular Processes ; the cell wall ; Tomatoes ; Transcriptome ; Trichomes ; Vegetal Biology ; Xylan ; Xylans - metabolism ; Xyloglucan</subject><ispartof>The Plant journal : for cell and molecular biology, 2018-11, Vol.96 (4), p.772-785</ispartof><rights>2018 The Authors The Plant Journal © 2018 John Wiley &amp; Sons Ltd</rights><rights>2018 The Authors The Plant Journal © 2018 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons Ltd and the Society for Experimental Biology</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9405-5197 ; 0000-0002-6702-3560 ; 0000-0002-0966-903X ; 0000-0001-8717-0034 ; 0000000267023560 ; 0000000294055197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.14067$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.14067$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30118566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-01873246$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1515776$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stranne, Maria</creatorcontrib><creatorcontrib>Ren, Yanfang</creatorcontrib><creatorcontrib>Fimognari, Lorenzo</creatorcontrib><creatorcontrib>Birdseye, Devon</creatorcontrib><creatorcontrib>Yan, Jingwei</creatorcontrib><creatorcontrib>Bardor, Muriel</creatorcontrib><creatorcontrib>Mollet, Jean‐Claude</creatorcontrib><creatorcontrib>Komatsu, Takanori</creatorcontrib><creatorcontrib>Kikuchi, Jun</creatorcontrib><creatorcontrib>Scheller, Henrik V.</creatorcontrib><creatorcontrib>Sakuragi, Yumiko</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary O‐Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O‐acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O‐acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock‐out mutants of Arabidopsis, tbl10‐1 and tbl10‐2, were isolated and shown to exhibit reduced levels of wall‐bound acetyl esters, equivalent of ~50% of the wild‐type level in pectin‐enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan‐I (RG‐I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O‐acetylation of RG‐I, possibly as an acetyltransferase, and suggest that O‐acetylated RG‐I plays a role in abiotic stress responses in Arabidopsis. Significance statement TBL10 is required for O‐acetylation of rhamnogalacturonan‐I.</description><subject>Acetylation</subject><subject>Acetyltransferase</subject><subject>Acetyltransferases - genetics</subject><subject>Acetyltransferases - metabolism</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biotechnology</subject><subject>Birefringence</subject><subject>Botrytis - metabolism</subject><subject>Cell Behavior</subject><subject>Cell walls</subject><subject>Cellular Biology</subject><subject>Chemical Sciences</subject><subject>Development Biology</subject><subject>Drought</subject><subject>Esters</subject><subject>Fractionation</subject><subject>Gametogenesis</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genomics</subject><subject>Glucans - metabolism</subject><subject>Hemicellulose</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Mannan</subject><subject>Mannans - metabolism</subject><subject>Microorganisms</subject><subject>Molecular biology</subject><subject>Molecular Networks</subject><subject>Mutants</subject><subject>O‐acetylation</subject><subject>Pathogens</subject><subject>Pectin</subject><subject>Pectins - metabolism</subject><subject>Phytopathology and phytopharmacy</subject><subject>Plant breeding</subject><subject>Plant growth</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Leaves - metabolism</subject><subject>Polymers</subject><subject>Polysaccharides - metabolism</subject><subject>Pseudomonas syringae - metabolism</subject><subject>Rhamnogalacturonan</subject><subject>rhamnogalacturonan I</subject><subject>Subcellular Processes</subject><subject>the cell wall</subject><subject>Tomatoes</subject><subject>Transcriptome</subject><subject>Trichomes</subject><subject>Vegetal Biology</subject><subject>Xylan</subject><subject>Xylans - metabolism</subject><subject>Xyloglucan</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0cFuFCEYB3BiNHatHnwBQ_Sih2n5gIGZ47ZRW7NJPayJJwnDMC6bWZgCo9mbj-Az-iSy3dqDHOAL_PIB-SP0EsgZlHGep-0ZcCLkI7QAJuqKAfv6GC1IK0glOdAT9CylLSEgmeBP0QkjAE0txAJ9W1-sgGCXcLS3s4u2x0OI-ObPr9_a2LwfdXbB4zDgyZrsDI4bvfPhux61yXMMXvtCr7HzeBl15_owpdIsb_TotNfP0ZNBj8m-uF9P0ZcP79eXV9Xq5uP15XJVbZisZdWAJn0zGE560RPQbUt1K7nhPbFkYIzT7jAPllBpBmk6amrWG9ZwWcquYafo9bFvSNmpZFy2ZmOC9-XRCmqopRQFvTui8jg1RbfTca-CdupquVKHPQKNZJSLH1Ds26OdYridbcpq55Kx46i9DXNSlDRtU9cUDvTNf3Qb5ujLdxUFRimnIGVRr-7V3O1s_3D_vygKOD-Cn260-4dzIOqQsSoZq7uM1frzp7uC_QUFeZhN</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Stranne, Maria</creator><creator>Ren, Yanfang</creator><creator>Fimognari, Lorenzo</creator><creator>Birdseye, Devon</creator><creator>Yan, Jingwei</creator><creator>Bardor, Muriel</creator><creator>Mollet, Jean‐Claude</creator><creator>Komatsu, Takanori</creator><creator>Kikuchi, Jun</creator><creator>Scheller, Henrik V.</creator><creator>Sakuragi, Yumiko</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Society for Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9405-5197</orcidid><orcidid>https://orcid.org/0000-0002-6702-3560</orcidid><orcidid>https://orcid.org/0000-0002-0966-903X</orcidid><orcidid>https://orcid.org/0000-0001-8717-0034</orcidid><orcidid>https://orcid.org/0000000267023560</orcidid><orcidid>https://orcid.org/0000000294055197</orcidid></search><sort><creationdate>201811</creationdate><title>TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana</title><author>Stranne, Maria ; Ren, Yanfang ; Fimognari, Lorenzo ; Birdseye, Devon ; Yan, Jingwei ; Bardor, Muriel ; Mollet, Jean‐Claude ; Komatsu, Takanori ; Kikuchi, Jun ; Scheller, Henrik V. ; Sakuragi, Yumiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h3757-81a0d8fc40d6d01a992a974c4d0e0f3342bf334fe027cf7cb2c53dc3847b2cb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylation</topic><topic>Acetyltransferase</topic><topic>Acetyltransferases - genetics</topic><topic>Acetyltransferases - metabolism</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biotechnology</topic><topic>Birefringence</topic><topic>Botrytis - metabolism</topic><topic>Cell Behavior</topic><topic>Cell walls</topic><topic>Cellular Biology</topic><topic>Chemical Sciences</topic><topic>Development Biology</topic><topic>Drought</topic><topic>Esters</topic><topic>Fractionation</topic><topic>Gametogenesis</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genomics</topic><topic>Glucans - metabolism</topic><topic>Hemicellulose</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Mannan</topic><topic>Mannans - metabolism</topic><topic>Microorganisms</topic><topic>Molecular biology</topic><topic>Molecular Networks</topic><topic>Mutants</topic><topic>O‐acetylation</topic><topic>Pathogens</topic><topic>Pectin</topic><topic>Pectins - metabolism</topic><topic>Phytopathology and phytopharmacy</topic><topic>Plant breeding</topic><topic>Plant growth</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Leaves - metabolism</topic><topic>Polymers</topic><topic>Polysaccharides - metabolism</topic><topic>Pseudomonas syringae - metabolism</topic><topic>Rhamnogalacturonan</topic><topic>rhamnogalacturonan I</topic><topic>Subcellular Processes</topic><topic>the cell wall</topic><topic>Tomatoes</topic><topic>Transcriptome</topic><topic>Trichomes</topic><topic>Vegetal Biology</topic><topic>Xylan</topic><topic>Xylans - metabolism</topic><topic>Xyloglucan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stranne, Maria</creatorcontrib><creatorcontrib>Ren, Yanfang</creatorcontrib><creatorcontrib>Fimognari, Lorenzo</creatorcontrib><creatorcontrib>Birdseye, Devon</creatorcontrib><creatorcontrib>Yan, Jingwei</creatorcontrib><creatorcontrib>Bardor, Muriel</creatorcontrib><creatorcontrib>Mollet, Jean‐Claude</creatorcontrib><creatorcontrib>Komatsu, Takanori</creatorcontrib><creatorcontrib>Kikuchi, Jun</creatorcontrib><creatorcontrib>Scheller, Henrik V.</creatorcontrib><creatorcontrib>Sakuragi, Yumiko</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stranne, Maria</au><au>Ren, Yanfang</au><au>Fimognari, Lorenzo</au><au>Birdseye, Devon</au><au>Yan, Jingwei</au><au>Bardor, Muriel</au><au>Mollet, Jean‐Claude</au><au>Komatsu, Takanori</au><au>Kikuchi, Jun</au><au>Scheller, Henrik V.</au><au>Sakuragi, Yumiko</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2018-11</date><risdate>2018</risdate><volume>96</volume><issue>4</issue><spage>772</spage><epage>785</epage><pages>772-785</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary O‐Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O‐acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O‐acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock‐out mutants of Arabidopsis, tbl10‐1 and tbl10‐2, were isolated and shown to exhibit reduced levels of wall‐bound acetyl esters, equivalent of ~50% of the wild‐type level in pectin‐enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan‐I (RG‐I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O‐acetylation of RG‐I, possibly as an acetyltransferase, and suggest that O‐acetylated RG‐I plays a role in abiotic stress responses in Arabidopsis. Significance statement TBL10 is required for O‐acetylation of rhamnogalacturonan‐I.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30118566</pmid><doi>10.1111/tpj.14067</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9405-5197</orcidid><orcidid>https://orcid.org/0000-0002-6702-3560</orcidid><orcidid>https://orcid.org/0000-0002-0966-903X</orcidid><orcidid>https://orcid.org/0000-0001-8717-0034</orcidid><orcidid>https://orcid.org/0000000267023560</orcidid><orcidid>https://orcid.org/0000000294055197</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-7412
ispartof The Plant journal : for cell and molecular biology, 2018-11, Vol.96 (4), p.772-785
issn 0960-7412
1365-313X
language eng
recordid cdi_osti_scitechconnect_1515776
source MEDLINE; Wiley Online Library; IngentaConnect Open Access; Elektronische Zeitschriftenbibliothek
subjects Acetylation
Acetyltransferase
Acetyltransferases - genetics
Acetyltransferases - metabolism
Arabidopsis
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
BASIC BIOLOGICAL SCIENCES
Biochemistry
Biochemistry, Molecular Biology
Biotechnology
Birefringence
Botrytis - metabolism
Cell Behavior
Cell walls
Cellular Biology
Chemical Sciences
Development Biology
Drought
Esters
Fractionation
Gametogenesis
Gene Expression Regulation, Plant
Genomics
Glucans - metabolism
Hemicellulose
Leaves
Life Sciences
Mannan
Mannans - metabolism
Microorganisms
Molecular biology
Molecular Networks
Mutants
O‐acetylation
Pathogens
Pectin
Pectins - metabolism
Phytopathology and phytopharmacy
Plant breeding
Plant growth
Plant Growth Regulators - metabolism
Plant Leaves - metabolism
Polymers
Polysaccharides - metabolism
Pseudomonas syringae - metabolism
Rhamnogalacturonan
rhamnogalacturonan I
Subcellular Processes
the cell wall
Tomatoes
Transcriptome
Trichomes
Vegetal Biology
Xylan
Xylans - metabolism
Xyloglucan
title TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TBL10%20is%20required%20for%20O%E2%80%90acetylation%20of%20pectic%20rhamnogalacturonan%E2%80%90I%20in%20Arabidopsis%20thaliana&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Stranne,%20Maria&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-11&rft.volume=96&rft.issue=4&rft.spage=772&rft.epage=785&rft.pages=772-785&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.14067&rft_dat=%3Cproquest_osti_%3E2089855211%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132242177&rft_id=info:pmid/30118566&rfr_iscdi=true