TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana
Summary O‐Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O‐acetylation of pectins are still largely unknown. In this stu...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2018-11, Vol.96 (4), p.772-785 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 785 |
---|---|
container_issue | 4 |
container_start_page | 772 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 96 |
creator | Stranne, Maria Ren, Yanfang Fimognari, Lorenzo Birdseye, Devon Yan, Jingwei Bardor, Muriel Mollet, Jean‐Claude Komatsu, Takanori Kikuchi, Jun Scheller, Henrik V. Sakuragi, Yumiko |
description | Summary
O‐Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O‐acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O‐acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock‐out mutants of Arabidopsis, tbl10‐1 and tbl10‐2, were isolated and shown to exhibit reduced levels of wall‐bound acetyl esters, equivalent of ~50% of the wild‐type level in pectin‐enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan‐I (RG‐I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O‐acetylation of RG‐I, possibly as an acetyltransferase, and suggest that O‐acetylated RG‐I plays a role in abiotic stress responses in Arabidopsis.
Significance statement
TBL10 is required for O‐acetylation of rhamnogalacturonan‐I. |
doi_str_mv | 10.1111/tpj.14067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1515776</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2089855211</sourcerecordid><originalsourceid>FETCH-LOGICAL-h3757-81a0d8fc40d6d01a992a974c4d0e0f3342bf334fe027cf7cb2c53dc3847b2cb83</originalsourceid><addsrcrecordid>eNpd0cFuFCEYB3BiNHatHnwBQ_Sih2n5gIGZ47ZRW7NJPayJJwnDMC6bWZgCo9mbj-Az-iSy3dqDHOAL_PIB-SP0EsgZlHGep-0ZcCLkI7QAJuqKAfv6GC1IK0glOdAT9CylLSEgmeBP0QkjAE0txAJ9W1-sgGCXcLS3s4u2x0OI-ObPr9_a2LwfdXbB4zDgyZrsDI4bvfPhux61yXMMXvtCr7HzeBl15_owpdIsb_TotNfP0ZNBj8m-uF9P0ZcP79eXV9Xq5uP15XJVbZisZdWAJn0zGE560RPQbUt1K7nhPbFkYIzT7jAPllBpBmk6amrWG9ZwWcquYafo9bFvSNmpZFy2ZmOC9-XRCmqopRQFvTui8jg1RbfTca-CdupquVKHPQKNZJSLH1Ds26OdYridbcpq55Kx46i9DXNSlDRtU9cUDvTNf3Qb5ujLdxUFRimnIGVRr-7V3O1s_3D_vygKOD-Cn260-4dzIOqQsSoZq7uM1frzp7uC_QUFeZhN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132242177</pqid></control><display><type>article</type><title>TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana</title><source>MEDLINE</source><source>Wiley Online Library</source><source>IngentaConnect Open Access</source><source>Elektronische Zeitschriftenbibliothek</source><creator>Stranne, Maria ; Ren, Yanfang ; Fimognari, Lorenzo ; Birdseye, Devon ; Yan, Jingwei ; Bardor, Muriel ; Mollet, Jean‐Claude ; Komatsu, Takanori ; Kikuchi, Jun ; Scheller, Henrik V. ; Sakuragi, Yumiko</creator><creatorcontrib>Stranne, Maria ; Ren, Yanfang ; Fimognari, Lorenzo ; Birdseye, Devon ; Yan, Jingwei ; Bardor, Muriel ; Mollet, Jean‐Claude ; Komatsu, Takanori ; Kikuchi, Jun ; Scheller, Henrik V. ; Sakuragi, Yumiko ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Summary
O‐Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O‐acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O‐acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock‐out mutants of Arabidopsis, tbl10‐1 and tbl10‐2, were isolated and shown to exhibit reduced levels of wall‐bound acetyl esters, equivalent of ~50% of the wild‐type level in pectin‐enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan‐I (RG‐I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O‐acetylation of RG‐I, possibly as an acetyltransferase, and suggest that O‐acetylated RG‐I plays a role in abiotic stress responses in Arabidopsis.
Significance statement
TBL10 is required for O‐acetylation of rhamnogalacturonan‐I.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/tpj.14067</identifier><identifier>PMID: 30118566</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Acetylation ; Acetyltransferase ; Acetyltransferases - genetics ; Acetyltransferases - metabolism ; Arabidopsis ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis - microbiology ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; BASIC BIOLOGICAL SCIENCES ; Biochemistry ; Biochemistry, Molecular Biology ; Biotechnology ; Birefringence ; Botrytis - metabolism ; Cell Behavior ; Cell walls ; Cellular Biology ; Chemical Sciences ; Development Biology ; Drought ; Esters ; Fractionation ; Gametogenesis ; Gene Expression Regulation, Plant ; Genomics ; Glucans - metabolism ; Hemicellulose ; Leaves ; Life Sciences ; Mannan ; Mannans - metabolism ; Microorganisms ; Molecular biology ; Molecular Networks ; Mutants ; O‐acetylation ; Pathogens ; Pectin ; Pectins - metabolism ; Phytopathology and phytopharmacy ; Plant breeding ; Plant growth ; Plant Growth Regulators - metabolism ; Plant Leaves - metabolism ; Polymers ; Polysaccharides - metabolism ; Pseudomonas syringae - metabolism ; Rhamnogalacturonan ; rhamnogalacturonan I ; Subcellular Processes ; the cell wall ; Tomatoes ; Transcriptome ; Trichomes ; Vegetal Biology ; Xylan ; Xylans - metabolism ; Xyloglucan</subject><ispartof>The Plant journal : for cell and molecular biology, 2018-11, Vol.96 (4), p.772-785</ispartof><rights>2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd</rights><rights>2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.</rights><rights>Copyright © 2018 John Wiley & Sons Ltd and the Society for Experimental Biology</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-9405-5197 ; 0000-0002-6702-3560 ; 0000-0002-0966-903X ; 0000-0001-8717-0034 ; 0000000267023560 ; 0000000294055197</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Ftpj.14067$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Ftpj.14067$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30118566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-01873246$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1515776$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Stranne, Maria</creatorcontrib><creatorcontrib>Ren, Yanfang</creatorcontrib><creatorcontrib>Fimognari, Lorenzo</creatorcontrib><creatorcontrib>Birdseye, Devon</creatorcontrib><creatorcontrib>Yan, Jingwei</creatorcontrib><creatorcontrib>Bardor, Muriel</creatorcontrib><creatorcontrib>Mollet, Jean‐Claude</creatorcontrib><creatorcontrib>Komatsu, Takanori</creatorcontrib><creatorcontrib>Kikuchi, Jun</creatorcontrib><creatorcontrib>Scheller, Henrik V.</creatorcontrib><creatorcontrib>Sakuragi, Yumiko</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary
O‐Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O‐acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O‐acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock‐out mutants of Arabidopsis, tbl10‐1 and tbl10‐2, were isolated and shown to exhibit reduced levels of wall‐bound acetyl esters, equivalent of ~50% of the wild‐type level in pectin‐enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan‐I (RG‐I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O‐acetylation of RG‐I, possibly as an acetyltransferase, and suggest that O‐acetylated RG‐I plays a role in abiotic stress responses in Arabidopsis.
Significance statement
TBL10 is required for O‐acetylation of rhamnogalacturonan‐I.</description><subject>Acetylation</subject><subject>Acetyltransferase</subject><subject>Acetyltransferases - genetics</subject><subject>Acetyltransferases - metabolism</subject><subject>Arabidopsis</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biotechnology</subject><subject>Birefringence</subject><subject>Botrytis - metabolism</subject><subject>Cell Behavior</subject><subject>Cell walls</subject><subject>Cellular Biology</subject><subject>Chemical Sciences</subject><subject>Development Biology</subject><subject>Drought</subject><subject>Esters</subject><subject>Fractionation</subject><subject>Gametogenesis</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genomics</subject><subject>Glucans - metabolism</subject><subject>Hemicellulose</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Mannan</subject><subject>Mannans - metabolism</subject><subject>Microorganisms</subject><subject>Molecular biology</subject><subject>Molecular Networks</subject><subject>Mutants</subject><subject>O‐acetylation</subject><subject>Pathogens</subject><subject>Pectin</subject><subject>Pectins - metabolism</subject><subject>Phytopathology and phytopharmacy</subject><subject>Plant breeding</subject><subject>Plant growth</subject><subject>Plant Growth Regulators - metabolism</subject><subject>Plant Leaves - metabolism</subject><subject>Polymers</subject><subject>Polysaccharides - metabolism</subject><subject>Pseudomonas syringae - metabolism</subject><subject>Rhamnogalacturonan</subject><subject>rhamnogalacturonan I</subject><subject>Subcellular Processes</subject><subject>the cell wall</subject><subject>Tomatoes</subject><subject>Transcriptome</subject><subject>Trichomes</subject><subject>Vegetal Biology</subject><subject>Xylan</subject><subject>Xylans - metabolism</subject><subject>Xyloglucan</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0cFuFCEYB3BiNHatHnwBQ_Sih2n5gIGZ47ZRW7NJPayJJwnDMC6bWZgCo9mbj-Az-iSy3dqDHOAL_PIB-SP0EsgZlHGep-0ZcCLkI7QAJuqKAfv6GC1IK0glOdAT9CylLSEgmeBP0QkjAE0txAJ9W1-sgGCXcLS3s4u2x0OI-ObPr9_a2LwfdXbB4zDgyZrsDI4bvfPhux61yXMMXvtCr7HzeBl15_owpdIsb_TotNfP0ZNBj8m-uF9P0ZcP79eXV9Xq5uP15XJVbZisZdWAJn0zGE560RPQbUt1K7nhPbFkYIzT7jAPllBpBmk6amrWG9ZwWcquYafo9bFvSNmpZFy2ZmOC9-XRCmqopRQFvTui8jg1RbfTca-CdupquVKHPQKNZJSLH1Ds26OdYridbcpq55Kx46i9DXNSlDRtU9cUDvTNf3Qb5ujLdxUFRimnIGVRr-7V3O1s_3D_vygKOD-Cn260-4dzIOqQsSoZq7uM1frzp7uC_QUFeZhN</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Stranne, Maria</creator><creator>Ren, Yanfang</creator><creator>Fimognari, Lorenzo</creator><creator>Birdseye, Devon</creator><creator>Yan, Jingwei</creator><creator>Bardor, Muriel</creator><creator>Mollet, Jean‐Claude</creator><creator>Komatsu, Takanori</creator><creator>Kikuchi, Jun</creator><creator>Scheller, Henrik V.</creator><creator>Sakuragi, Yumiko</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Society for Experimental Biology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9405-5197</orcidid><orcidid>https://orcid.org/0000-0002-6702-3560</orcidid><orcidid>https://orcid.org/0000-0002-0966-903X</orcidid><orcidid>https://orcid.org/0000-0001-8717-0034</orcidid><orcidid>https://orcid.org/0000000267023560</orcidid><orcidid>https://orcid.org/0000000294055197</orcidid></search><sort><creationdate>201811</creationdate><title>TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana</title><author>Stranne, Maria ; Ren, Yanfang ; Fimognari, Lorenzo ; Birdseye, Devon ; Yan, Jingwei ; Bardor, Muriel ; Mollet, Jean‐Claude ; Komatsu, Takanori ; Kikuchi, Jun ; Scheller, Henrik V. ; Sakuragi, Yumiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h3757-81a0d8fc40d6d01a992a974c4d0e0f3342bf334fe027cf7cb2c53dc3847b2cb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetylation</topic><topic>Acetyltransferase</topic><topic>Acetyltransferases - genetics</topic><topic>Acetyltransferases - metabolism</topic><topic>Arabidopsis</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biotechnology</topic><topic>Birefringence</topic><topic>Botrytis - metabolism</topic><topic>Cell Behavior</topic><topic>Cell walls</topic><topic>Cellular Biology</topic><topic>Chemical Sciences</topic><topic>Development Biology</topic><topic>Drought</topic><topic>Esters</topic><topic>Fractionation</topic><topic>Gametogenesis</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genomics</topic><topic>Glucans - metabolism</topic><topic>Hemicellulose</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Mannan</topic><topic>Mannans - metabolism</topic><topic>Microorganisms</topic><topic>Molecular biology</topic><topic>Molecular Networks</topic><topic>Mutants</topic><topic>O‐acetylation</topic><topic>Pathogens</topic><topic>Pectin</topic><topic>Pectins - metabolism</topic><topic>Phytopathology and phytopharmacy</topic><topic>Plant breeding</topic><topic>Plant growth</topic><topic>Plant Growth Regulators - metabolism</topic><topic>Plant Leaves - metabolism</topic><topic>Polymers</topic><topic>Polysaccharides - metabolism</topic><topic>Pseudomonas syringae - metabolism</topic><topic>Rhamnogalacturonan</topic><topic>rhamnogalacturonan I</topic><topic>Subcellular Processes</topic><topic>the cell wall</topic><topic>Tomatoes</topic><topic>Transcriptome</topic><topic>Trichomes</topic><topic>Vegetal Biology</topic><topic>Xylan</topic><topic>Xylans - metabolism</topic><topic>Xyloglucan</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stranne, Maria</creatorcontrib><creatorcontrib>Ren, Yanfang</creatorcontrib><creatorcontrib>Fimognari, Lorenzo</creatorcontrib><creatorcontrib>Birdseye, Devon</creatorcontrib><creatorcontrib>Yan, Jingwei</creatorcontrib><creatorcontrib>Bardor, Muriel</creatorcontrib><creatorcontrib>Mollet, Jean‐Claude</creatorcontrib><creatorcontrib>Komatsu, Takanori</creatorcontrib><creatorcontrib>Kikuchi, Jun</creatorcontrib><creatorcontrib>Scheller, Henrik V.</creatorcontrib><creatorcontrib>Sakuragi, Yumiko</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stranne, Maria</au><au>Ren, Yanfang</au><au>Fimognari, Lorenzo</au><au>Birdseye, Devon</au><au>Yan, Jingwei</au><au>Bardor, Muriel</au><au>Mollet, Jean‐Claude</au><au>Komatsu, Takanori</au><au>Kikuchi, Jun</au><au>Scheller, Henrik V.</au><au>Sakuragi, Yumiko</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2018-11</date><risdate>2018</risdate><volume>96</volume><issue>4</issue><spage>772</spage><epage>785</epage><pages>772-785</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
O‐Acetylated pectins are abundant in the primary cell wall of plants and growing evidence suggests they have important roles in plant cell growth and interaction with the environment. Despite their importance, genes required for O‐acetylation of pectins are still largely unknown. In this study, we showed that TRICHOME BIREFRINGENCE LIKE 10 (AT3G06080) is involved in O‐acetylation of pectins in Arabidopsis (Arabidopsis thaliana). The activity of the TBL10 promoter was strong in tissues where pectins are highly abundant (e.g. leaves). Two homozygous knock‐out mutants of Arabidopsis, tbl10‐1 and tbl10‐2, were isolated and shown to exhibit reduced levels of wall‐bound acetyl esters, equivalent of ~50% of the wild‐type level in pectin‐enriched fractions derived from leaves. Further fractionation revealed that the degree of acetylation of the pectin rhamnogalacturonan‐I (RG‐I) was reduced in the tbl10 mutant compared to the wild type, whereas the pectin homogalacturonan (HG) was unaffected. The degrees of acetylation in hemicelluloses (i.e. xyloglucan, xylan and mannan) were indistinguishable between the tbl10 mutants and the wild type. The mutant plants contained normal trichomes in leaves and exhibited a similar level of susceptibility to the phytopathogenic microorganisms Pseudomonas syringae pv. tomato DC3000 and Botrytis cinerea; while they displayed enhanced tolerance to drought. These results indicate that TBL10 is required for O‐acetylation of RG‐I, possibly as an acetyltransferase, and suggest that O‐acetylated RG‐I plays a role in abiotic stress responses in Arabidopsis.
Significance statement
TBL10 is required for O‐acetylation of rhamnogalacturonan‐I.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>30118566</pmid><doi>10.1111/tpj.14067</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9405-5197</orcidid><orcidid>https://orcid.org/0000-0002-6702-3560</orcidid><orcidid>https://orcid.org/0000-0002-0966-903X</orcidid><orcidid>https://orcid.org/0000-0001-8717-0034</orcidid><orcidid>https://orcid.org/0000000267023560</orcidid><orcidid>https://orcid.org/0000000294055197</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2018-11, Vol.96 (4), p.772-785 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_osti_scitechconnect_1515776 |
source | MEDLINE; Wiley Online Library; IngentaConnect Open Access; Elektronische Zeitschriftenbibliothek |
subjects | Acetylation Acetyltransferase Acetyltransferases - genetics Acetyltransferases - metabolism Arabidopsis Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis - microbiology Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana BASIC BIOLOGICAL SCIENCES Biochemistry Biochemistry, Molecular Biology Biotechnology Birefringence Botrytis - metabolism Cell Behavior Cell walls Cellular Biology Chemical Sciences Development Biology Drought Esters Fractionation Gametogenesis Gene Expression Regulation, Plant Genomics Glucans - metabolism Hemicellulose Leaves Life Sciences Mannan Mannans - metabolism Microorganisms Molecular biology Molecular Networks Mutants O‐acetylation Pathogens Pectin Pectins - metabolism Phytopathology and phytopharmacy Plant breeding Plant growth Plant Growth Regulators - metabolism Plant Leaves - metabolism Polymers Polysaccharides - metabolism Pseudomonas syringae - metabolism Rhamnogalacturonan rhamnogalacturonan I Subcellular Processes the cell wall Tomatoes Transcriptome Trichomes Vegetal Biology Xylan Xylans - metabolism Xyloglucan |
title | TBL10 is required for O‐acetylation of pectic rhamnogalacturonan‐I in Arabidopsis thaliana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T18%3A34%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TBL10%20is%20required%20for%20O%E2%80%90acetylation%20of%20pectic%20rhamnogalacturonan%E2%80%90I%20in%20Arabidopsis%20thaliana&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Stranne,%20Maria&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2018-11&rft.volume=96&rft.issue=4&rft.spage=772&rft.epage=785&rft.pages=772-785&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/tpj.14067&rft_dat=%3Cproquest_osti_%3E2089855211%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132242177&rft_id=info:pmid/30118566&rfr_iscdi=true |