Implosion of auto-magnetizing helical liners on the Z facility

In the first auto-magnetizing liner implosion experiments on the Z Facility, precompressed internal axial fields near 150 T were measured and 7.2-keV radiography indicated a high level of cylindrical uniformity of the imploding liner's inner surface. An auto-magnetizing (AutoMag) liner is made...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2019-05, Vol.26 (5)
Hauptverfasser: Shipley, G. A., Awe, T. J., Hutsel, B. T., Greenly, J. B., Jennings, C. A., Slutz, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physics of plasmas
container_volume 26
creator Shipley, G. A.
Awe, T. J.
Hutsel, B. T.
Greenly, J. B.
Jennings, C. A.
Slutz, S. A.
description In the first auto-magnetizing liner implosion experiments on the Z Facility, precompressed internal axial fields near 150 T were measured and 7.2-keV radiography indicated a high level of cylindrical uniformity of the imploding liner's inner surface. An auto-magnetizing (AutoMag) liner is made of discrete metallic helical conductors encapsulated in insulating material. The liner generates internal axial magnetic field as a 1–2 MA, 100–200 ns current prepulse flows through the helical conductors. After the prepulse, the fast-rising main current pulse causes the insulating material between the metallic helices to break down ceasing axial field production. After breakdown, the helical liner, nonuniform in both density and electrical conductivity, implodes in 100 ns. In-flight radiography data demonstrate that while the inner wall maintains cylindrical uniformity, multiple new helically oriented structures are self-generated within the outer liner material layers during the implosion; this was not predicted by simulations. Furthermore, liner stagnation was delayed compared to simulation predictions. An analytical implosion model is compared with experimental data and preshot simulations to explore how changes in the premagnetization field strength and drive current affect the liner implosion trajectory. Both the measurement of >100 T internal axial field production and the demonstration of cylindrical uniformity of the imploding liner's inner wall are encouraging for promoting the use of AutoMag liners in future MagLIF experiments.
doi_str_mv 10.1063/1.5089468
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1513053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2226212997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-ce4893ee024f91ad7e936229a63b528ab12c2ef0846e0dbb32ddde67d5aa73fe3</originalsourceid><addsrcrecordid>eNp90M9LwzAUB_AgCs7pwf-g6EmhMz_atLkIMvwxGHhREC8hTV-2jK6pSSbMv96ODj0Int47fPi-xxehc4InBHN2QyY5LkXGywM0Iv2WFrzIDnd7gVPOs7djdBLCCmOc8bwcodvZumtcsK5NnEnUJrp0rRYtRPtl20WyhMZq1SSNbcGHpFdxCcl7YpS2jY3bU3RkVBPgbD_H6PXh_mX6lM6fH2fTu3mqWSliqiErBQPANDOCqLoAwTilQnFW5bRUFaGagsFlxgHXVcVoXdfAizpXqmAG2BhdDLkuRCuDthH0Uru2BR0lyQnDOevR5YA67z42EKJcuY1v-78kpZRTQoUoenU1KO1dCB6M7LxdK7-VBMtdh5LIfYe9vR7s7qKKfUs_-NP5Xyi72vyH_yZ_Ay6AfuM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226212997</pqid></control><display><type>article</type><title>Implosion of auto-magnetizing helical liners on the Z facility</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Shipley, G. A. ; Awe, T. J. ; Hutsel, B. T. ; Greenly, J. B. ; Jennings, C. A. ; Slutz, S. A.</creator><creatorcontrib>Shipley, G. A. ; Awe, T. J. ; Hutsel, B. T. ; Greenly, J. B. ; Jennings, C. A. ; Slutz, S. A.</creatorcontrib><description>In the first auto-magnetizing liner implosion experiments on the Z Facility, precompressed internal axial fields near 150 T were measured and 7.2-keV radiography indicated a high level of cylindrical uniformity of the imploding liner's inner surface. An auto-magnetizing (AutoMag) liner is made of discrete metallic helical conductors encapsulated in insulating material. The liner generates internal axial magnetic field as a 1–2 MA, 100–200 ns current prepulse flows through the helical conductors. After the prepulse, the fast-rising main current pulse causes the insulating material between the metallic helices to break down ceasing axial field production. After breakdown, the helical liner, nonuniform in both density and electrical conductivity, implodes in 100 ns. In-flight radiography data demonstrate that while the inner wall maintains cylindrical uniformity, multiple new helically oriented structures are self-generated within the outer liner material layers during the implosion; this was not predicted by simulations. Furthermore, liner stagnation was delayed compared to simulation predictions. An analytical implosion model is compared with experimental data and preshot simulations to explore how changes in the premagnetization field strength and drive current affect the liner implosion trajectory. Both the measurement of &gt;100 T internal axial field production and the demonstration of cylindrical uniformity of the imploding liner's inner wall are encouraging for promoting the use of AutoMag liners in future MagLIF experiments.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.5089468</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computer simulation ; Conductors ; Electrical resistivity ; Field strength ; Helical flow ; Helices ; Linings ; Plasma physics ; Predictions ; Radiography ; Stagnation ; Trajectory measurement</subject><ispartof>Physics of plasmas, 2019-05, Vol.26 (5)</ispartof><rights>Author(s)</rights><rights>2019 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-ce4893ee024f91ad7e936229a63b528ab12c2ef0846e0dbb32ddde67d5aa73fe3</citedby><cites>FETCH-LOGICAL-c389t-ce4893ee024f91ad7e936229a63b528ab12c2ef0846e0dbb32ddde67d5aa73fe3</cites><orcidid>0000-0002-0536-4001 ; 0000-0001-6383-1184 ; 0000-0001-5036-0969 ; 0000000205364001 ; 0000000150360969 ; 0000000163831184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/1.5089468$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1513053$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shipley, G. A.</creatorcontrib><creatorcontrib>Awe, T. J.</creatorcontrib><creatorcontrib>Hutsel, B. T.</creatorcontrib><creatorcontrib>Greenly, J. B.</creatorcontrib><creatorcontrib>Jennings, C. A.</creatorcontrib><creatorcontrib>Slutz, S. A.</creatorcontrib><title>Implosion of auto-magnetizing helical liners on the Z facility</title><title>Physics of plasmas</title><description>In the first auto-magnetizing liner implosion experiments on the Z Facility, precompressed internal axial fields near 150 T were measured and 7.2-keV radiography indicated a high level of cylindrical uniformity of the imploding liner's inner surface. An auto-magnetizing (AutoMag) liner is made of discrete metallic helical conductors encapsulated in insulating material. The liner generates internal axial magnetic field as a 1–2 MA, 100–200 ns current prepulse flows through the helical conductors. After the prepulse, the fast-rising main current pulse causes the insulating material between the metallic helices to break down ceasing axial field production. After breakdown, the helical liner, nonuniform in both density and electrical conductivity, implodes in 100 ns. In-flight radiography data demonstrate that while the inner wall maintains cylindrical uniformity, multiple new helically oriented structures are self-generated within the outer liner material layers during the implosion; this was not predicted by simulations. Furthermore, liner stagnation was delayed compared to simulation predictions. An analytical implosion model is compared with experimental data and preshot simulations to explore how changes in the premagnetization field strength and drive current affect the liner implosion trajectory. Both the measurement of &gt;100 T internal axial field production and the demonstration of cylindrical uniformity of the imploding liner's inner wall are encouraging for promoting the use of AutoMag liners in future MagLIF experiments.</description><subject>Computer simulation</subject><subject>Conductors</subject><subject>Electrical resistivity</subject><subject>Field strength</subject><subject>Helical flow</subject><subject>Helices</subject><subject>Linings</subject><subject>Plasma physics</subject><subject>Predictions</subject><subject>Radiography</subject><subject>Stagnation</subject><subject>Trajectory measurement</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp90M9LwzAUB_AgCs7pwf-g6EmhMz_atLkIMvwxGHhREC8hTV-2jK6pSSbMv96ODj0Int47fPi-xxehc4InBHN2QyY5LkXGywM0Iv2WFrzIDnd7gVPOs7djdBLCCmOc8bwcodvZumtcsK5NnEnUJrp0rRYtRPtl20WyhMZq1SSNbcGHpFdxCcl7YpS2jY3bU3RkVBPgbD_H6PXh_mX6lM6fH2fTu3mqWSliqiErBQPANDOCqLoAwTilQnFW5bRUFaGagsFlxgHXVcVoXdfAizpXqmAG2BhdDLkuRCuDthH0Uru2BR0lyQnDOevR5YA67z42EKJcuY1v-78kpZRTQoUoenU1KO1dCB6M7LxdK7-VBMtdh5LIfYe9vR7s7qKKfUs_-NP5Xyi72vyH_yZ_Ay6AfuM</recordid><startdate>201905</startdate><enddate>201905</enddate><creator>Shipley, G. A.</creator><creator>Awe, T. J.</creator><creator>Hutsel, B. T.</creator><creator>Greenly, J. B.</creator><creator>Jennings, C. A.</creator><creator>Slutz, S. A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0536-4001</orcidid><orcidid>https://orcid.org/0000-0001-6383-1184</orcidid><orcidid>https://orcid.org/0000-0001-5036-0969</orcidid><orcidid>https://orcid.org/0000000205364001</orcidid><orcidid>https://orcid.org/0000000150360969</orcidid><orcidid>https://orcid.org/0000000163831184</orcidid></search><sort><creationdate>201905</creationdate><title>Implosion of auto-magnetizing helical liners on the Z facility</title><author>Shipley, G. A. ; Awe, T. J. ; Hutsel, B. T. ; Greenly, J. B. ; Jennings, C. A. ; Slutz, S. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-ce4893ee024f91ad7e936229a63b528ab12c2ef0846e0dbb32ddde67d5aa73fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer simulation</topic><topic>Conductors</topic><topic>Electrical resistivity</topic><topic>Field strength</topic><topic>Helical flow</topic><topic>Helices</topic><topic>Linings</topic><topic>Plasma physics</topic><topic>Predictions</topic><topic>Radiography</topic><topic>Stagnation</topic><topic>Trajectory measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shipley, G. A.</creatorcontrib><creatorcontrib>Awe, T. J.</creatorcontrib><creatorcontrib>Hutsel, B. T.</creatorcontrib><creatorcontrib>Greenly, J. B.</creatorcontrib><creatorcontrib>Jennings, C. A.</creatorcontrib><creatorcontrib>Slutz, S. A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shipley, G. A.</au><au>Awe, T. J.</au><au>Hutsel, B. T.</au><au>Greenly, J. B.</au><au>Jennings, C. A.</au><au>Slutz, S. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implosion of auto-magnetizing helical liners on the Z facility</atitle><jtitle>Physics of plasmas</jtitle><date>2019-05</date><risdate>2019</risdate><volume>26</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>In the first auto-magnetizing liner implosion experiments on the Z Facility, precompressed internal axial fields near 150 T were measured and 7.2-keV radiography indicated a high level of cylindrical uniformity of the imploding liner's inner surface. An auto-magnetizing (AutoMag) liner is made of discrete metallic helical conductors encapsulated in insulating material. The liner generates internal axial magnetic field as a 1–2 MA, 100–200 ns current prepulse flows through the helical conductors. After the prepulse, the fast-rising main current pulse causes the insulating material between the metallic helices to break down ceasing axial field production. After breakdown, the helical liner, nonuniform in both density and electrical conductivity, implodes in 100 ns. In-flight radiography data demonstrate that while the inner wall maintains cylindrical uniformity, multiple new helically oriented structures are self-generated within the outer liner material layers during the implosion; this was not predicted by simulations. Furthermore, liner stagnation was delayed compared to simulation predictions. An analytical implosion model is compared with experimental data and preshot simulations to explore how changes in the premagnetization field strength and drive current affect the liner implosion trajectory. Both the measurement of &gt;100 T internal axial field production and the demonstration of cylindrical uniformity of the imploding liner's inner wall are encouraging for promoting the use of AutoMag liners in future MagLIF experiments.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.5089468</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0536-4001</orcidid><orcidid>https://orcid.org/0000-0001-6383-1184</orcidid><orcidid>https://orcid.org/0000-0001-5036-0969</orcidid><orcidid>https://orcid.org/0000000205364001</orcidid><orcidid>https://orcid.org/0000000150360969</orcidid><orcidid>https://orcid.org/0000000163831184</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2019-05, Vol.26 (5)
issn 1070-664X
1089-7674
language eng
recordid cdi_osti_scitechconnect_1513053
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computer simulation
Conductors
Electrical resistivity
Field strength
Helical flow
Helices
Linings
Plasma physics
Predictions
Radiography
Stagnation
Trajectory measurement
title Implosion of auto-magnetizing helical liners on the Z facility
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T13%3A23%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implosion%20of%20auto-magnetizing%20helical%20liners%20on%20the%20Z%20facility&rft.jtitle=Physics%20of%20plasmas&rft.au=Shipley,%20G.%20A.&rft.date=2019-05&rft.volume=26&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/1.5089468&rft_dat=%3Cproquest_osti_%3E2226212997%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226212997&rft_id=info:pmid/&rfr_iscdi=true