Cellulose hydrolysis by Clostridium thermocellum is agnostic to substrate structural properties in contrast to fungal cellulases

The native recalcitrance of lignocellulosic biomass hinders its effective deconstruction for biological conversion to fuel ethanol. However, once cellulose is physically available to enzymes/microbes, i.e. , macro-accessible, cellulose micro-accessibility, i.e. , the accessibility as influenced by c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2019, Vol.21 (10), p.2810-2822
Hauptverfasser: Kothari, Ninad, Bhagia, Samarthya, Zaher, Maher, Pu, Yunqiao, Mittal, Ashutosh, Yoo, Chang Geun, Himmel, Michael E., Ragauskas, Arthur J., Kumar, Rajeev, Wyman, Charles E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2822
container_issue 10
container_start_page 2810
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 21
creator Kothari, Ninad
Bhagia, Samarthya
Zaher, Maher
Pu, Yunqiao
Mittal, Ashutosh
Yoo, Chang Geun
Himmel, Michael E.
Ragauskas, Arthur J.
Kumar, Rajeev
Wyman, Charles E.
description The native recalcitrance of lignocellulosic biomass hinders its effective deconstruction for biological conversion to fuel ethanol. However, once cellulose is physically available to enzymes/microbes, i.e. , macro-accessible, cellulose micro-accessibility, i.e. , the accessibility as influenced by cellulose properties, further affects cellulose conversion. Here, we performed a comparative study of the effect of cellulose micro-accessibility on cellulose conversion by two biological approaches of potential commercial interest: consolidated bioprocessing (CBP) using Clostridium thermocellum and cell-free saccharification mediated by fungal enzymes. Commercially available cellulosic substrates, Avicel® PH-101, Sigmacell Cellulose Type 50, cotton linters, Whatman™ 1 milled filter paper, and α-cellulose were employed to constitute different cellulose micro-accessibilities. Physiochemical characterization was performed on these substrates to determine key morphological and chemical differences. Biological conversion of these substrates showed that C. thermocellum was unaffected overall by cellulose structural properties, i.e. , micro-accessibility, and achieved similar solids solubilization and metabolite production from these structurally different materials. However, fungal enzymes digested these substrates to different extents. Specifically, glucan conversion of these substrates diminished in the following order: milled filter paper > Avicel > Sigmacell and α-cellulose > cotton linters. Here, we propose that C. thermocellum digestion of lignocellulosic biomass is primarily controlled by the physical availability of cellulose in the lignocellulosic matrix and largely unaffected by cellulose properties once cellulose is made macro-accessible. In contrast, fungal enzymes require cellulose to be physically accessible, i.e. , macro-accessible, as well as have properties amenable to digestion, i.e. , micro-accessible.
doi_str_mv 10.1039/C9GC00262F
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1511773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1039_C9GC00262F</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-3af50a13c59b14d3a64f4b8b6e32bfb5bbbc900b0cc4bb77d04ea2af8e01ffa03</originalsourceid><addsrcrecordid>eNpFkE9LxDAUxIMouK5e_ATBo1B9-dN2e5TirsKCFz2XJE22kbRdkvTQmx_d1BU9zePNj2EYhG4JPBBg1WNd7WoAWtDtGVoRXrCsoiWc_90FvURXIXwCEFIWfIW-au3c5MagcTe3fnRzsAHLGdfpF71t7dTj2Gnfj2ohe5xscRiSaRWOIw6TTJyIGieZVJy8cPjox6P20eqA7YDVOCQixAU303BIwE-WE0GHa3RhhAv65lfX6GP7_F6_ZPu33Wv9tM8UrfKYMWFyEISpvJKEt0wU3HC5kYVmVBqZSylVBSBBKS5lWbbAtaDCbDQQYwSwNbo75S7Nm6Bs1KpLzQatYkPyNEfJEnR_gpQfQ_DaNEdve-HnhkCzDNz8D8y-AX56crY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cellulose hydrolysis by Clostridium thermocellum is agnostic to substrate structural properties in contrast to fungal cellulases</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Kothari, Ninad ; Bhagia, Samarthya ; Zaher, Maher ; Pu, Yunqiao ; Mittal, Ashutosh ; Yoo, Chang Geun ; Himmel, Michael E. ; Ragauskas, Arthur J. ; Kumar, Rajeev ; Wyman, Charles E.</creator><creatorcontrib>Kothari, Ninad ; Bhagia, Samarthya ; Zaher, Maher ; Pu, Yunqiao ; Mittal, Ashutosh ; Yoo, Chang Geun ; Himmel, Michael E. ; Ragauskas, Arthur J. ; Kumar, Rajeev ; Wyman, Charles E.</creatorcontrib><description>The native recalcitrance of lignocellulosic biomass hinders its effective deconstruction for biological conversion to fuel ethanol. However, once cellulose is physically available to enzymes/microbes, i.e. , macro-accessible, cellulose micro-accessibility, i.e. , the accessibility as influenced by cellulose properties, further affects cellulose conversion. Here, we performed a comparative study of the effect of cellulose micro-accessibility on cellulose conversion by two biological approaches of potential commercial interest: consolidated bioprocessing (CBP) using Clostridium thermocellum and cell-free saccharification mediated by fungal enzymes. Commercially available cellulosic substrates, Avicel® PH-101, Sigmacell Cellulose Type 50, cotton linters, Whatman™ 1 milled filter paper, and α-cellulose were employed to constitute different cellulose micro-accessibilities. Physiochemical characterization was performed on these substrates to determine key morphological and chemical differences. Biological conversion of these substrates showed that C. thermocellum was unaffected overall by cellulose structural properties, i.e. , micro-accessibility, and achieved similar solids solubilization and metabolite production from these structurally different materials. However, fungal enzymes digested these substrates to different extents. Specifically, glucan conversion of these substrates diminished in the following order: milled filter paper &gt; Avicel &gt; Sigmacell and α-cellulose &gt; cotton linters. Here, we propose that C. thermocellum digestion of lignocellulosic biomass is primarily controlled by the physical availability of cellulose in the lignocellulosic matrix and largely unaffected by cellulose properties once cellulose is made macro-accessible. In contrast, fungal enzymes require cellulose to be physically accessible, i.e. , macro-accessible, as well as have properties amenable to digestion, i.e. , micro-accessible.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/C9GC00262F</identifier><language>eng</language><publisher>United Kingdom: Royal Society of Chemistry (RSC)</publisher><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2019, Vol.21 (10), p.2810-2822</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-3af50a13c59b14d3a64f4b8b6e32bfb5bbbc900b0cc4bb77d04ea2af8e01ffa03</citedby><cites>FETCH-LOGICAL-c295t-3af50a13c59b14d3a64f4b8b6e32bfb5bbbc900b0cc4bb77d04ea2af8e01ffa03</cites><orcidid>0000-0002-0434-0745 ; 0000-0002-9495-1880 ; 0000-0003-2554-1447 ; 0000-0002-7985-2841 ; 0000-0002-6179-2414 ; 0000-0002-3848-0818 ; 0000-0002-3536-554X ; 0000-0001-7523-0108 ; 0000000261792414 ; 000000023536554X ; 0000000294951880 ; 0000000204340745 ; 0000000279852841 ; 0000000325541447 ; 0000000175230108 ; 0000000238480818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1511773$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kothari, Ninad</creatorcontrib><creatorcontrib>Bhagia, Samarthya</creatorcontrib><creatorcontrib>Zaher, Maher</creatorcontrib><creatorcontrib>Pu, Yunqiao</creatorcontrib><creatorcontrib>Mittal, Ashutosh</creatorcontrib><creatorcontrib>Yoo, Chang Geun</creatorcontrib><creatorcontrib>Himmel, Michael E.</creatorcontrib><creatorcontrib>Ragauskas, Arthur J.</creatorcontrib><creatorcontrib>Kumar, Rajeev</creatorcontrib><creatorcontrib>Wyman, Charles E.</creatorcontrib><title>Cellulose hydrolysis by Clostridium thermocellum is agnostic to substrate structural properties in contrast to fungal cellulases</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>The native recalcitrance of lignocellulosic biomass hinders its effective deconstruction for biological conversion to fuel ethanol. However, once cellulose is physically available to enzymes/microbes, i.e. , macro-accessible, cellulose micro-accessibility, i.e. , the accessibility as influenced by cellulose properties, further affects cellulose conversion. Here, we performed a comparative study of the effect of cellulose micro-accessibility on cellulose conversion by two biological approaches of potential commercial interest: consolidated bioprocessing (CBP) using Clostridium thermocellum and cell-free saccharification mediated by fungal enzymes. Commercially available cellulosic substrates, Avicel® PH-101, Sigmacell Cellulose Type 50, cotton linters, Whatman™ 1 milled filter paper, and α-cellulose were employed to constitute different cellulose micro-accessibilities. Physiochemical characterization was performed on these substrates to determine key morphological and chemical differences. Biological conversion of these substrates showed that C. thermocellum was unaffected overall by cellulose structural properties, i.e. , micro-accessibility, and achieved similar solids solubilization and metabolite production from these structurally different materials. However, fungal enzymes digested these substrates to different extents. Specifically, glucan conversion of these substrates diminished in the following order: milled filter paper &gt; Avicel &gt; Sigmacell and α-cellulose &gt; cotton linters. Here, we propose that C. thermocellum digestion of lignocellulosic biomass is primarily controlled by the physical availability of cellulose in the lignocellulosic matrix and largely unaffected by cellulose properties once cellulose is made macro-accessible. In contrast, fungal enzymes require cellulose to be physically accessible, i.e. , macro-accessible, as well as have properties amenable to digestion, i.e. , micro-accessible.</description><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LxDAUxIMouK5e_ATBo1B9-dN2e5TirsKCFz2XJE22kbRdkvTQmx_d1BU9zePNj2EYhG4JPBBg1WNd7WoAWtDtGVoRXrCsoiWc_90FvURXIXwCEFIWfIW-au3c5MagcTe3fnRzsAHLGdfpF71t7dTj2Gnfj2ohe5xscRiSaRWOIw6TTJyIGieZVJy8cPjox6P20eqA7YDVOCQixAU303BIwE-WE0GHa3RhhAv65lfX6GP7_F6_ZPu33Wv9tM8UrfKYMWFyEISpvJKEt0wU3HC5kYVmVBqZSylVBSBBKS5lWbbAtaDCbDQQYwSwNbo75S7Nm6Bs1KpLzQatYkPyNEfJEnR_gpQfQ_DaNEdve-HnhkCzDNz8D8y-AX56crY</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Kothari, Ninad</creator><creator>Bhagia, Samarthya</creator><creator>Zaher, Maher</creator><creator>Pu, Yunqiao</creator><creator>Mittal, Ashutosh</creator><creator>Yoo, Chang Geun</creator><creator>Himmel, Michael E.</creator><creator>Ragauskas, Arthur J.</creator><creator>Kumar, Rajeev</creator><creator>Wyman, Charles E.</creator><general>Royal Society of Chemistry (RSC)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0434-0745</orcidid><orcidid>https://orcid.org/0000-0002-9495-1880</orcidid><orcidid>https://orcid.org/0000-0003-2554-1447</orcidid><orcidid>https://orcid.org/0000-0002-7985-2841</orcidid><orcidid>https://orcid.org/0000-0002-6179-2414</orcidid><orcidid>https://orcid.org/0000-0002-3848-0818</orcidid><orcidid>https://orcid.org/0000-0002-3536-554X</orcidid><orcidid>https://orcid.org/0000-0001-7523-0108</orcidid><orcidid>https://orcid.org/0000000261792414</orcidid><orcidid>https://orcid.org/000000023536554X</orcidid><orcidid>https://orcid.org/0000000294951880</orcidid><orcidid>https://orcid.org/0000000204340745</orcidid><orcidid>https://orcid.org/0000000279852841</orcidid><orcidid>https://orcid.org/0000000325541447</orcidid><orcidid>https://orcid.org/0000000175230108</orcidid><orcidid>https://orcid.org/0000000238480818</orcidid></search><sort><creationdate>2019</creationdate><title>Cellulose hydrolysis by Clostridium thermocellum is agnostic to substrate structural properties in contrast to fungal cellulases</title><author>Kothari, Ninad ; Bhagia, Samarthya ; Zaher, Maher ; Pu, Yunqiao ; Mittal, Ashutosh ; Yoo, Chang Geun ; Himmel, Michael E. ; Ragauskas, Arthur J. ; Kumar, Rajeev ; Wyman, Charles E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-3af50a13c59b14d3a64f4b8b6e32bfb5bbbc900b0cc4bb77d04ea2af8e01ffa03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kothari, Ninad</creatorcontrib><creatorcontrib>Bhagia, Samarthya</creatorcontrib><creatorcontrib>Zaher, Maher</creatorcontrib><creatorcontrib>Pu, Yunqiao</creatorcontrib><creatorcontrib>Mittal, Ashutosh</creatorcontrib><creatorcontrib>Yoo, Chang Geun</creatorcontrib><creatorcontrib>Himmel, Michael E.</creatorcontrib><creatorcontrib>Ragauskas, Arthur J.</creatorcontrib><creatorcontrib>Kumar, Rajeev</creatorcontrib><creatorcontrib>Wyman, Charles E.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kothari, Ninad</au><au>Bhagia, Samarthya</au><au>Zaher, Maher</au><au>Pu, Yunqiao</au><au>Mittal, Ashutosh</au><au>Yoo, Chang Geun</au><au>Himmel, Michael E.</au><au>Ragauskas, Arthur J.</au><au>Kumar, Rajeev</au><au>Wyman, Charles E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cellulose hydrolysis by Clostridium thermocellum is agnostic to substrate structural properties in contrast to fungal cellulases</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2019</date><risdate>2019</risdate><volume>21</volume><issue>10</issue><spage>2810</spage><epage>2822</epage><pages>2810-2822</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>The native recalcitrance of lignocellulosic biomass hinders its effective deconstruction for biological conversion to fuel ethanol. However, once cellulose is physically available to enzymes/microbes, i.e. , macro-accessible, cellulose micro-accessibility, i.e. , the accessibility as influenced by cellulose properties, further affects cellulose conversion. Here, we performed a comparative study of the effect of cellulose micro-accessibility on cellulose conversion by two biological approaches of potential commercial interest: consolidated bioprocessing (CBP) using Clostridium thermocellum and cell-free saccharification mediated by fungal enzymes. Commercially available cellulosic substrates, Avicel® PH-101, Sigmacell Cellulose Type 50, cotton linters, Whatman™ 1 milled filter paper, and α-cellulose were employed to constitute different cellulose micro-accessibilities. Physiochemical characterization was performed on these substrates to determine key morphological and chemical differences. Biological conversion of these substrates showed that C. thermocellum was unaffected overall by cellulose structural properties, i.e. , micro-accessibility, and achieved similar solids solubilization and metabolite production from these structurally different materials. However, fungal enzymes digested these substrates to different extents. Specifically, glucan conversion of these substrates diminished in the following order: milled filter paper &gt; Avicel &gt; Sigmacell and α-cellulose &gt; cotton linters. Here, we propose that C. thermocellum digestion of lignocellulosic biomass is primarily controlled by the physical availability of cellulose in the lignocellulosic matrix and largely unaffected by cellulose properties once cellulose is made macro-accessible. In contrast, fungal enzymes require cellulose to be physically accessible, i.e. , macro-accessible, as well as have properties amenable to digestion, i.e. , micro-accessible.</abstract><cop>United Kingdom</cop><pub>Royal Society of Chemistry (RSC)</pub><doi>10.1039/C9GC00262F</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0434-0745</orcidid><orcidid>https://orcid.org/0000-0002-9495-1880</orcidid><orcidid>https://orcid.org/0000-0003-2554-1447</orcidid><orcidid>https://orcid.org/0000-0002-7985-2841</orcidid><orcidid>https://orcid.org/0000-0002-6179-2414</orcidid><orcidid>https://orcid.org/0000-0002-3848-0818</orcidid><orcidid>https://orcid.org/0000-0002-3536-554X</orcidid><orcidid>https://orcid.org/0000-0001-7523-0108</orcidid><orcidid>https://orcid.org/0000000261792414</orcidid><orcidid>https://orcid.org/000000023536554X</orcidid><orcidid>https://orcid.org/0000000294951880</orcidid><orcidid>https://orcid.org/0000000204340745</orcidid><orcidid>https://orcid.org/0000000279852841</orcidid><orcidid>https://orcid.org/0000000325541447</orcidid><orcidid>https://orcid.org/0000000175230108</orcidid><orcidid>https://orcid.org/0000000238480818</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2019, Vol.21 (10), p.2810-2822
issn 1463-9262
1463-9270
language eng
recordid cdi_osti_scitechconnect_1511773
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
title Cellulose hydrolysis by Clostridium thermocellum is agnostic to substrate structural properties in contrast to fungal cellulases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A11%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cellulose%20hydrolysis%20by%20Clostridium%20thermocellum%20is%20agnostic%20to%20substrate%20structural%20properties%20in%20contrast%20to%20fungal%20cellulases&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Kothari,%20Ninad&rft.date=2019&rft.volume=21&rft.issue=10&rft.spage=2810&rft.epage=2822&rft.pages=2810-2822&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/C9GC00262F&rft_dat=%3Ccrossref_osti_%3E10_1039_C9GC00262F%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true